首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A linear tetranuclear 3d–4f Co2Dy2 cluster assembled from a polydentate Schiff base exhibits single‐molecule magnet (SMM) behavior with an anisotropic barrier of 33.8 K. Due to the presence of diamagnetic cobalt(III) ions, the tetranuclear cluster of 1 behaves magnetically like a dinuclear Dy2 system. However, the diamagnetic segment might efficiently minimize undesirable intermolecular magnetic interactions, thereby improving the performance of the SMM behavior of 1 . This discrete complex presents us with a unique opportunity to study the magnetic properties and to probe the dynamics of magnetization in a magnetically isolated Dy2 system.  相似文献   

2.
3.
Three pairs of enantiopure chiral triangular Ln3 clusters, [Ln3LRRRRRR/SSSSSS3‐OH)2(H2O)2(SCN)4]?xCH3OH?yH2O ( R ‐Dy3 , Ln=Dy, x=6, y=0; S ‐Dy3 , Ln=Dy, x=6, y=1; R ‐Ho3 , Ln=Ho, x=6, y=1; S ‐Ho3 , Ln=Ho, x=6, y=1; R ‐Er3 , Ln=Er, x=6, y=0; S ‐Er3 , Ln=Er, x=6, y=1), have been successfully synthesized by a rational enantioselective synthetic strategy. The core of triangular Ln3 is bound in the central N6O3 of the macrocyclic ligand, and the coordination spheres of Ln ions are completed by four SCN? anions and two H2O molecules in axial positions of the macrocycle. The circular dichroism (CD) and vibrational circular dichroism (VCD) spectra of the enantiomers demonstrate that the chirality is successfully transferred from the ligands to the resulting Ln3 clusters. Ac susceptibility measurements reveal that single‐molecule magnet behavior occurs for both enantiopure clusters of R ‐Dy3 and S ‐Dy3 . This work is one of the few examples of the successful design of a pair of triangular Dy3 clusters showing simultaneously slow magnetic relaxation and optical activity, and this might open up new opportunities to develop novel multifunctional materials.  相似文献   

4.
5.
Polyoxometalates (POMs) with heterodinuclear lanthanoid cores, TBA8H4[{Ln(μ2‐OH)2Ln′}(γ‐SiW10O36)2] ( LnLn′ ; Ln=Gd, Dy; Ln′=Eu, Yb, Lu; TBA=tetra‐n‐butylammonium), were successfully synthesized through the stepwise incorporation of two types of lanthanoid cations into the vacant sites of lacunary [γ‐SiW10O36]8? units without the use of templating cations. The incorporation of a Ln3+ ion into the vacant site between two [γ‐SiW10O36]8? units afforded mononuclear Ln3+‐containing sandwich‐type POMs with vacant sites ( Ln1 ; TBA8H5[{Ln(H2O)4}(γ‐SiW10O36)2]; Ln=Dy, Gd, La). The vacant sites in Ln1 were surrounded by coordinating W? O and Ln? O oxygen atoms. On the addition of one equivalent of [Ln′(acac)3] to solutions of Dy1 or Gd1 in 1,2‐dichloroethane (DCE), heterodinuclear lanthanoid cores with bis(μ2‐OH) bridging ligands, [Dy(μ2‐OH)2Ln′]4+, were selectively synthesized ( LnLn′ ; Ln=Dy, Gd; Ln′=Eu, Yb, Lu). On the other hand, La1 , which contained the largest lanthanoid cation, could not accommodate a second Ln′3+ ion. DyLn′ showed single‐molecule magnet behavior and their energy barriers for magnetization reversal (ΔE/kB) could be manipulated by adjusting the coordination geometry and anisotropy of the Dy3+ ion by tuning the adjacent Ln′3+ ion in the heterodinuclear [Dy(μ2‐OH)2Ln′]4+ cores. The energy barriers increased in the order: DyLu (ΔE/kB=48 K)< DyYb (53 K)< DyDy (66 K)< DyEu (73 K), with an increase in the ionic radii of Ln′3+; DyEu showed the highest energy barrier.  相似文献   

6.
Given the recent advent of mononuclear single‐molecule magnets (SMMs), a rational approach based on lanthanides with axially elongated f‐electron charge cloud (prolate) has only recently received attention. We report herein a new SMM, [Li(THF)4[Er{N(SiMe3)2}3Cl]?2 THF, which exhibits slow relaxation of the magnetization under zero dc field with an effective barrier to the reversal of magnetization (ΔEeff/kB=63.3 K) and magnetic hysteresis up to 3 K at a magnetic field sweep rate of 34.6 Oe s?1. This work questions the theory that oblate or prolate lanthanides must be stabilized with the appropriate ligand framework in order for SMM behavior to be favored.  相似文献   

7.
Lanthanide‐based extended coordination frameworks showing photocontrolled single‐molecule magnet (SMM) behavior were prepared by combining highly anisotropic DyIII and HoIII ions with the carboxylato‐functionalized photochromic molecule 1,2‐bis(5‐carboxyl‐2‐methyl‐3‐thienyl)perfluorocyclopentene (H2dae), which acts as a bridging ligand. As a result, two new compounds of the general formula [{LnIII2(dae)3(DMSO)3(MeOH)} ? 10 M eOH]n (M=Dy for 1 a and Ho for 2 ) and two additional pseudo‐polymorphs [{DyIII2(dae)3(DMSO)3(H2O)} ? x MeOH]n ( 1 b ) and [{DyIII2(dae)3(DMSO)3(DMSO)} ? x MeOH]n ( 1 c ) were obtained. All four compounds have 2D coordination‐layer topologies, in which carboxylate‐bridged Ln2 units are linked together by dae2? anions into grid‐like frameworks. All four compounds exhibited a strong reversible photochromic response to UV/Vis light. Moreover, both 1 a and 2 show field‐induced SMM behavior. The slow magnetic relaxation of 1 a is influenced by the photoisomerization reaction leading to the observation of the cross‐effect: photocontrolled SMM behavior.  相似文献   

8.
9.
A record anisotropy barrier (319 cm?1) for all d‐f complexes was observed for a unique FeII‐DyIII‐FeII single‐molecule magnet (SMM), which possesses two asymmetric and distorted FeII ions and one quasi‐D5h DyIII ion. The frozen magnetization of the DyIII ion leads to the decreased FeII relaxation rates evident in the Mössbauer spectrum. Ab initio calculations suggest that tunneling is interrupted effectively thanks to the exchange doublets.  相似文献   

10.
Mixed‐metal uranium compounds are very attractive candidates in the design of single‐molecule magnets (SMMs), but only one 3d–5f hetero‐polymetallic SMM containing a uranium center is known. Herein, we report two trimeric heterodimetallic 3d–5f complexes self‐assembled by cation–cation interactions between a uranyl(V) complex and a TPA‐capped MII complex (M=Mn ( 1 ), Cd ( 2 ); TPA=tris(2‐pyridylmethyl)amine). The metal centers were strategically chosen to promote the formation of discrete molecules rather than extended chains. Compound 1 , which contains an almost linear {Mn? O?U?O? Mn} core, exhibits SMM behavior with a relaxation barrier of 81±0.5 K—the highest reported for a mono‐uranium system—arising from intramolecular Mn–U exchange interactions combined with the high Ising anisotropy of the uranyl(V) moiety. Compound 1 also exhibits an open magnetic hysteresis loop at temperatures less than 3 K, with a significant coercive field of 1.9 T at 1.8 K.  相似文献   

11.
The rational synthesis of the 2‐{1‐methylpyridine‐N‐oxide‐4,5‐[4,5‐bis(propylthio)tetrathiafulvalenyl]‐1H‐benzimidazol‐2‐yl}pyridine ligand ( L ) is described. It led to the tetranuclear complex [Dy4(tta)12( L )2] ( Dy‐Dy2‐Dy ) after coordination reaction with the precursor Dy(tta)3?2 H2O (tta?=2‐thenoyltrifluoroacetonate). The X‐ray structure of Dy‐Dy2‐Dy can be described as two terminal mononuclear units bridged by a central antiferromagnetically coupled dinuclear complex. The terminal N2O6 and central O8 environments are described as distorted square antiprisms. The ac magnetism measurements revealed a strong out‐of‐phase signal of the magnetic susceptibility with two distinct sets of data. The high‐ and low‐frequency components were attributed to the two terminal mononuclear single‐molecule magnets (SMMs) and the central dinuclear SMM, respectively. A magnetic hysteresis loop was detected at very low temperature. From both structural and magnetic points of view, the tetranuclear SMM Dy‐Dy2‐Dy is a self‐assembly of two known mononuclear SMMs bridged by a known dinuclear SMM.  相似文献   

12.
13.
The experimental investigation of the molecular magnetic anisotropy in crystals in which the magnetic centers are symmetry related, but do not have a parallel orientation has been approached by using torque magnetometry. A single crystal of the orthorhombic organometallic Cp*ErCOT [Cp*=pentamethylcyclopentadiene anion (C5Me5?); COT=cyclooctatetraenedianion (C8H82?)] single‐molecule magnet, characterized by the presence of two nonparallel families of molecules in the crystal, has been investigated above its blocking temperature. The results confirm an Ising‐type anisotropy with the easy direction pointing along the pseudosymmetry axis of the complex, as previously suggested by out‐of‐equilibrium angular‐resolved magnetometry. The use of torque magnetometry, not requiring the presence of magnetic hysteresis, proves to be even more powerful for these purposes than standard single‐crystal magnetometry. Furthermore, exploiting the sensitivity and versatility of this technique, magnetic anisotropy has been investigated up to 150 K, providing additional information on the crystal‐field splitting of the ground J multiplet of the ErIII ion.  相似文献   

14.
A giant tetrahedral heterometallic polyoxometalate (POM) [Dy30Co8Ge12W108O408(OH)42(OH2)30]56?, which shows single‐molecule magnet (SMM) behavior, is described. This hybrid contains the largest number of 4f ions of any polyoxometalate (POM) reported to date and is the first to incorporate two different 3d–4f and 4f coordination cluster assemblies within same POM framework.  相似文献   

15.
16.
Single‐molecule magnets comprising one spin center represent a fundamental size limit for spin‐based information storage. Such an application hinges upon the realization of molecules possessing substantial barriers to spin inversion. Axially symmetric complexes of lanthanides hold the most promise for this due to their inherently high magnetic anisotropies and low tunneling probabilities. Herein, we demonstrate that strikingly large spin reversal barriers of 216 and 331 cm?1 can also be realized in low‐symmetry lanthanide tetraphenylborate complexes of the type [Cp*2Ln(BPh4)] (Cp*=pentamethylcyclopentadienyl; Ln=Tb ( 1 ) and Dy ( 2 )). The dysprosium congener showed hysteretic magnetization data up to 5.3 K. Further studies of the magnetic relaxation processes of 1 and 2 under applied dc fields and upon dilution within a matrix of [Cp*2Y(BPh4)] revealed considerable suppression of the tunneling pathway, emphasizing the strong influence of dipolar interactions on the low‐temperature magnetization dynamics in these systems.  相似文献   

17.
18.
A new dysprosium(III) phosphonate dimer {Dy(notpH4)(NO3)(H2O)}2 ? 8 H2O ( 1 ) [notpH6=1,4,7‐triazacyclononane‐1,4,7‐triyl‐tris(methylenephosphonic acid)] that contains two equivalent DyIII ions with a three‐capped trigonal prism environment is reported. Complex 1 can be transformed into {Dy(notpH4)(NO3)(H2O)}2 ( 2 ) in a reversible manner by desorption and absorption of solvent water at ambient temperature. This process is accompanied by a large dielectric response. Magnetic studies reveal that both 1 and 2 show thermally activated magnetization relaxation as expected for single‐molecule magnets. Moreover, the magnetic dynamics of the two compounds can be manipulated by controlling the number of solvent molecules at room temperature.  相似文献   

19.
A series of isostructural compounds with formula [M(TCNQF4)2(H2O)6]TCNQF4 ? 3 H2O (M=Tb ( 1 ), Y ( 2 ), Y:Tb (74:26) ( 3 ), and Y:Tb (97:3) ( 4 ); TCNQF4= tetrafluorotetracyanoquinodimethane) were prepared and their magnetic properties investigated. Compounds 1 , 3 , and 4 show the beginning of a frequency‐dependent out‐of‐phase ac signal, and decreasing intensity of the signal with decreased concentration of TbIII ions in the diluted samples is observed. No out‐of‐phase signal was observed for 2 , an indication that the behavior of 1 , 3 , and 4 is indicative of slow paramagnetic relaxation of TbIII ions in the samples. A more detailed micro‐SQUID study at low temperature revealed an interplay between single‐molecule magnetic (SMM) behavior and a phonon bottleneck (PB) effect, and that these properties depend on the concentration of diamagnetic yttrium ions. A combination of SMM and PB phenomena was found for 1 , whereby the PB effect increases with increasing dilution until eventually a pure PB effect is observed for 2 . The PB behavior is interpreted as being due to the presence of a “sea of organic S=1/2 radicals” from the TCNQF4 radicals in these compounds. The present data underscore the fact that the presence of an out‐of‐phase ac signal may not, in fact, be caused by SMM behavior, particularly when magnetic metal ions are combined with organic radical ligands such as those found in the organocyanide family.  相似文献   

20.
We report the synthesis of the novel heterometallic complex [Fe3Cr(L)2(dpm)6]?Et2O ( Fe3CrPh ) (Hdpm=dipivaloylmethane, H3L=2‐hydroxymethyl‐2‐phenylpropane‐1,3‐diol), obtained by replacing the central iron(III) atom by a chromium(III) ion in an Fe4 propeller‐like single‐molecule magnet (SMM). Structural and analytical data, high‐frequency EPR (HF‐EPR) and magnetic studies indicate that the compound is a solid solution of chromium‐centred Fe3Cr (S=6) and Fe4 (S=5) species in an 84:16 ratio. Although SMM behaviour is retained, the |D| parameter is considerably reduced as compared with the corresponding tetra‐iron(III) propeller (D=?0.179 vs. ?0.418 cm?1), and results in a lower energy barrier for magnetisation reversal (Ueff/kB=7.0 vs. 15.6 K). The origin of magnetic anisotropy in Fe3CrPh has been fully elucidated by preparing its Cr‐ and Fe‐doped Ga4 analogues, which contain chromium(III) in the central position (c) and iron(III) in two magnetically distinct peripheral sites (p1 and p2). According to HF‐EPR spectra, the Cr and Fe dopants have hard‐axis anisotropies with Dc=0.470(5) cm?1, Ec=0.029(1) cm?1, Dp1=0.710(5) cm?1, Ep1=0.077(3) cm?1, Dp2=0.602(5) cm?1, and Ep2=0.101(3) cm?1. Inspection of projection coefficients shows that contributions from dipolar interactions and from the central chromium(III) ion cancel out almost exactly. As a consequence, the easy‐axis anisotropy of Fe3CrPh is entirely due to the peripheral, hard‐axis‐type iron(III) ions, the anisotropy tensors of which are necessarily orthogonal to the threefold molecular axis. A similar contribution from peripheral ions is expected to rule the magnetic anisotropy in the tetra‐iron(III) complexes currently under investigation in the field of molecular spintronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号