首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of new 5‐(1‐aryl‐1H‐pyrazole‐4‐yl)‐1H‐tetrazoles 4a‐l were synthesized via [3 + 2] cycloaddition reaction from 1‐aryl‐1H‐pyrazole‐4‐carbonitriles 3a‐l , sodium azide and ammonium chloride, using dimethylformamide (DMF) as solvent, in good yields: 64–85%. The structures of these newly synthesized compounds were determined from the IR, 1H‐ and 13C‐NMR spectroscopic data and elemental analyses.  相似文献   

2.
The kinetics of (3+2) cycloaddition reactions of 18 different donor–acceptor cyclopropanes with the same aldehyde were studied by in situ NMR spectroscopy. Increasing the electron density of the donor residue accelerates the reaction by a factor of up to 50 compared to the standard system (donor group=phenyl), whereas electron‐withdrawing substituents slow down the reaction by a factor up to 660. This behavior is in agreement with the Hammett substituent parameter σ. The obtained rate constants from the (3+2) cycloadditions correlate well with data from additionally studied (3+n) cycloadditions with a nitrone (n=3) and an isobenzofuran (n=4). A comparison of the kinetic data with the bond lengths in the cyclopropane (obtained by X‐ray diffraction and computation), or the 1H and 13C NMR shifts, revealed no correlation. However, the computed relaxed force constants of donor–acceptor cyclopropanes proved to be a good indicator for the reactivity of the three‐membered ring.  相似文献   

3.
The formal 1,3‐cycloaddition of 2‐diazocyclohexane‐1,3‐diones 1a –1 d to acyclic and cyclic enol ethers in the presence of RhII‐catalysts to afford dihydrofurans has been investigated. Reaction with a cis/trans mixture of 1‐ethoxyprop‐1‐ene ( 13a ) yielded the dihydrofuran 14a with a cis/trans ratio of 85 : 15, while that with (Z)‐1‐ethoxy‐3,3,3‐trifluoroprop‐1‐ene ( 13b ) gave the cis‐product 14b exclusively. The stereochemical outcome of the reaction is consistent with a concerted rather than stepwise mechanism for cycloaddition. The asymmetric cycloaddition of 2‐diazocyclohexane‐1,3‐dione ( 1a ) or 2‐diazodimedone (=2‐diazo‐5,5‐dimethylcyclohexane‐1,3‐dione; 1b ) to furan and dihydrofuran was investigated with a representative selection of chiral, nonracemic RhII catalysts, but no significant enantioselectivity was observed, and the reported enantioselective cycloadditions of these diazo compounds could not be reproduced. The absence of enantioselectivity in the cycloadditions of 2‐diazocyclohexane‐1,3‐diones is tentatively explained in terms of the Hammond postulate. The transition state for the cycloaddition occurs early on the reaction coordinate owing to the high reactivity of the intermediate metallocarbene. An early transition state is associated with low selectivity. In contrast, the transition state for transfer of stabilized metallocarbenes occurs later, and the reactions exhibit higher selectivity.  相似文献   

4.
This work reports gold‐catalyzed [4+3]‐annulations of 2‐(1‐alkynyl)‐2‐alken‐1‐ones with anthranils to yield epoxybenzoazepine products with excellent exo‐diastereoselectivity (dr>25:1). The utility of this new gold catalysis is manifested by applicable substrates over a broad scope. More importantly, the enantioselective versions of these [4+3]‐cycloadditions have been developed satisfactorily with chiral gold catalysts under ambient conditions (DCM, 0 °C); the ee levels range from 88.0–99.9 %. With DFT calculations, we postulate a stepwise pathway to rationalize the preferable exo‐stereoselection.  相似文献   

5.
In the contrast to all known [3 + 2] cycloadditions between nitrones and conjugated nitroalkenes, reactions of (E )‐3,3,3‐trichloro‐1‐nitroprop‐1‐ene with (Z )‐C ‐(9‐anthryl)‐N ‐arylnitrones are proceeding in a fully regioselective and stereoselective manner. Additionally, density functional theory calculations suggest stepwise, zwitterionic mechanism of these cycloadditions.  相似文献   

6.
A facile, convenient, and adequate method has been developed for the synthesis of novel 5‐amino‐3‐(2‐oxo‐2H‐chromen‐3‐yl)‐7‐aryl‐7H‐thiazolo[3,2‐a]pyridine‐6,8‐dicarbonitriles ( 6 ) by employing 2‐(4‐(2‐oxo‐2H‐chromen‐3‐yl)thiazol‐2‐yl)acetonitrile ( 3 ) as an important precursor. Initially, we have synthesized the target compounds in a stepwise manner and then approached a tandem method to examine the feasibility of one‐pot method. Subsequently, one‐pot three‐component protocol has been established for the synthesis of title compounds by the reaction of 3 with benzaldehyde and malononitrile in refluxing ethanol engender a new six‐membered thiazolo[3,2‐a] pyridine as a hybrid scaffold. Reaction conditions were optimized for this reaction and a broad substrate scope with various aryl and heteroaryl aldehydes make this protocol very practical, attractive, and worthy. Mechanistic aspects for the formation of these compounds were outlined comprehensively. Characterization of these newly synthesized compounds was achieved by means of IR, 1H NMR, 13C NMR, and HRMS.  相似文献   

7.
5‐(2‐Aminothiazol‐4‐yl)‐8‐hydroxyquinoline 2 has been synthesized by treating thiourea with 5‐chloroacetyl‐8‐hydroxyquinoline 1 . The amine 2 was treated with aromatic aldehydes to furnish schiff bases 6a‐c which on treatment with phenyl isothiocyanate gave the corresponding thiazolo‐s‐triazines 7a‐c . Reaction of 2 with phenyl isothiocyanate gave the corresponding aminocarbothiamide derivative 8 which on reaction with malonic acid in acetyl chloride afforded thiobarbituric acid derivative 9 . Coupling of 9 with diazonium salt gave the phenyl hydrazono derivative 10 . However, reaction of 2 with carbon disulphide and methyl iodide afforded dithiocarbamidate 12 which on treatment with ethylenediamine, o‐aminophenol and/or phenylenediamine gave the aminoazolo derivatives 13–15 , respectively. Other substituted fused thiazolopyrimidines 16–20 have been also prepared by the reaction of 2 with some selected dicarbonyl reagents. The characterisation of synthesized compounds has been done on the basis of elemental analysis, IR, 1H‐NMR and mass spectral data. All the newly synthesized compounds have been screened for their antimicrobial activities.  相似文献   

8.
The present work articulates the synthesis of a new series of organo‐functionalized triethoxysilanes derived from versatile carboxylic acids and 3‐azidopropyltriethoxysilane in excellent yields. A proficient and convenient route implicating the Cu(I)‐catalysed 1,3‐cycloaddition of organic azide with terminal alkynes, labelled as click silylation, has been developed for the generation of ester‐triazole‐linked alkoxysilanyl scaffolds ( 4a – f ). All the synthesized compounds have been thoroughly characterized using elemental analysis and Fourier transform infrared, 1H NMR and 13C NMR spectroscopic techniques. Importantly, the fabricated alkoxysilanes are potentially amenable for an in situ sol–gel condensation reaction with silica nanospheres leading to the incorporation of organic functionality via covalent grafting onto the nanostructured particle system. As a proof of concept, a one‐pot preparation of organic–inorganic hybrid nanoparticles is presented using bis‐silane 4 f . The efficiency and selectivity of the prepared nanocomposite towards metal ions is highlighted using adsorption experiments, and the immobilized nanoparticles present a high sensing efficiency towards Cu2+ and Pb2+ ions while demonstrating better response than that of the bulk material.  相似文献   

9.
Thermal reactions of the alkoxyamine diastereomers DEPN‐R′ [DEPN: N‐(2‐methylpropyl)‐N‐(1‐diethylphosphophono‐2,2‐dimethyl‐propyl)‐aminoxyl; R′: methoxy‐carbonylethyl and phenylethyl] with (R,R) + (S,S) and (R,S) + (S,R) configurations have been investigated by 1H NMR at 100 °C. During the overall decay the diastereomers interconvert, and an analytical treatment of the combined processes is presented. Rate constants are obtained for the cleavage and reformation of DEPN‐R′ from NMR, electron spin resonance, and chemically induced dynamic nuclear polarization experiments also using 2,2,6,6‐tetramethylpiperidinyl‐1‐oxyl (TEMPO) as a radical scavenger. The rate constants depend on the diastereomer configuration and the residues R′. Simulations of the kinetics observed with styrene and methyl methacrylate containing solutions yielded rate constants for unimeric and polymeric alkoxyamines DEPN‐(M)n‐R′. The results were compatible with the known DEPN mediation of living styrene and acrylate polymerizations. For methyl methacrylate the equilibrium constant of the reversible cleavage of the dormant chains DEPN‐(M)n‐R′ is very large and renders successful living polymerizations unlikely. Mechanistic and kinetic differences of DEPN‐ and TEMPO‐mediated polymerizations are discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3264–3283, 2002  相似文献   

10.
RhII‐catalyzed intermolecular [3+2] cycloaddition of 2 H‐azirines with N‐sulfonyl‐1,2,3‐triazoles is disclosed, in which a series of fully functionalized pyrroles is produced via rhodium azavinyl carbene intermediates. A distinct feature of this reaction is that the azavinyl carbene serves as a [2 C] equivalent, instead of as [1 C] or aza‐[3 C] synthons, which have been reported previously in cyclopropanations and [3+n] cycloadditions. Moreover, this methodology has also been successfully applied in the total synthesis of URB447 as well as the formal synthesis of Atorvastatin (Lipitor).  相似文献   

11.
The glycoconjugation of biologically privileged 1,3,4‐oxadiazole scaffold is described via Cu(I)‐catalyzed azide–alkyne cycloaddition. A series of glycosyl alkynes 1b – i , obtained from various commercial sugars, were treated with azide functionalized 1,3,4‐oxadiazole using click chemistry to access triazole‐linked glycosylated 1,3,4‐oxadiazoles 10b – i in good yields. The structure of the developed glycoconjugates has been ascertained by extensive spectroscopic analysis (1H &13C NMR, IR, and MS).  相似文献   

12.
An efficient one‐pot reaction has been developed for the synthesis of 2,3‐dichloroquinoxaline derivatives 3a – n . The reaction was performed in two steps via a silica gel catalyzed tandem process from o‐phenylenediamine and oxalic acid, followed by addition of phosphorus oxychloride (POCl3). A variety of 2,3‐dichloroquinoxalines have been obtained in good to excellent overall yields. Eight known compounds 3a – 3h were characterized by IR, 1H‐NMR, and mass spectroscopies. Compounds 3i – 3n without spectroscopic data were characterized by IR, 1H‐NMR, 13C‐NMR, and mass spectroscopies.  相似文献   

13.
The cyclization of phenacyl anthranilate has been studied with the aim to develop the synthesis of 2‐(2′‐aminophenyl)‐4‐phenyloxazole. However, a different course of the reaction than expected was observed. 2‐Phenyl‐2‐hydroxymethyl‐4‐oxo‐1,2,3,4‐tetrahydroquinazoline ( 3a ) was formed by the reaction of phenacyl anthranilate ( 2 ) with ammonium acetate under various conditions. 3‐Hydroxy‐2‐phenyl‐4(1H)‐quinolinone ( 4 ) arose by heating compound 3a in acetic acid. The same compound was obtained by melting compound 3a , but the yield was lower. Different types of products resulted in the reaction of compound 3a with acetic anhydride. Under mild conditions acetylated products 2‐acetoxymethyl‐2‐phenyl‐4‐oxo‐1,2,3,4‐tetrahydroquinazoline ( 7a ) and 2‐acetoxymethyl‐3‐acetyl‐2‐phenyl‐4‐oxo‐1,2,3,4‐tetrahydroquinazoline ( 8 ) were prepared. If the reaction was carried out under reflux of the reaction mixture, molecular rearrangement took place to give cis and trans 2‐methyl‐4‐oxo‐3‐(1‐phenyl‐2‐acetoxy)vinyl‐3,4‐dihydroquinazolines ( 9a and 9b ). All prepared compounds have been characterised by their 1H, 13C and 15N NMR spectra, IR spectra and MS.  相似文献   

14.
We have studied the solvent, temperature, and pressure influences on the reaction rates of cyclic and acyclic N=N bonds in the Diels–Alder and ene reactions. The transfer from N‐phenylmaleimide ( 9 ) to a structural analogue, 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione ( 2 ), is accompanied by the rate increase in five to six orders of magnitude in the Diels–Alder reactions with cyclopentadiene ( 4 ) and 9,10‐dimethylanthracene ( 5 ), whereas the transfer from dimethyl fumarate ( 10 ) to diethyl azodicarboxylate ( 1 ) increases only in one to two orders of magnitude. The ratio of the reaction rate constants ( 2 + 4 )/( 1 + 4 ) is very large (5.2 × 107) and almost the same (5.3 × 107) as in the ene reactions with tetramethylethylene ( 7 ), ( 2 + 7 )/( 1 + 7 ). It has been observed that the N=N bond in reagent 2 has strong electrophilic, and its N–N moiety in the transition state has nucleophilic properties, which results from the analysis of the solvation enthalpy transfer of reagents, activated complex, and adduct in the Diels–Alder reaction of 2 with anthracene 22 .  相似文献   

15.
A simple, practical, and efficient approach to synthesize new series of 2‐(3‐(2,4‐dichlorophenoxy)‐2‐(4‐(dimethylamino)phenyl)‐4‐oxoazetidin‐1‐ylamino)‐N‐arylacetamide by Staudinger [2 + 2] cycloaddition reaction. The titled compounds were evaluated for their antibacterial and antifungal activity against eight microorganisms. All the newly synthesized compounds are characterized by IR, 1H‐NMR, and mass spectroscopic data.  相似文献   

16.
An efficient and simple route for the preparation of 2‐oxopyridine‐fused 1,3‐diazaheterocyclic compounds via a three component reaction is described. It involves the reaction between alkylenediamines 1 , 1,1‐bis(methylsulfanyl)‐2‐nitroethene, and alkyl prop‐2‐ynoates 2 in refluxing THF (Table). The structures were corroborated by spectroscopic (IR, 1H‐ and 13C‐NMR, and EI‐MS) and elemental analyses. A plausible mechanism for this type of cyclization is proposed (Scheme).  相似文献   

17.
Perinaphthenone (=1H‐phenalen‐1‐one), known for efficient population of its T1 (π,π*) state and suggested as a standard sensitizer for singlet oxygen (1Δg) formation, forms a single stereoisomer of a head‐to‐tail [2+2] photoadduct across its C(2)=C(3) bond with 2‐morpholinoprop‐2‐enenitrile in benzene by broad band UV excitation (λ≥280 nm). The reaction is advantageously run to low conversion of starting materials only. The structure of the adduct, especially the relative configuration at C(9), has been derived from 1H‐NMR data including NOE signal enhancement studies.  相似文献   

18.
Some new compounds (E)‐3‐aryl‐1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐prop‐2‐en‐1‐ones 5a–e were prepared by 1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐ethanone and various aromatic aldehydes. Then one pot reaction was happened by compounds 5a–e with hydrazine hydrate in acetic acid or propionic acid, respectively, to give the title compounds 1acyl‐5‐aryl‐3‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐4,5‐dihydro‐1H‐pyrazoles 6a–i . All structures were established by MS, IR, CHN, 1H‐NMR and 13C‐NMR spectral data. J. Heterocyclic Chem., (2012).  相似文献   

19.
The anionic polymerization of (E)‐1,3‐pentadiene (EP) and (Z)‐1,3‐pentadiene (ZP) together with mixture of the E/Z isomers are investigated, respectively. The kinetic analysis shows that the activation energy for EP (86.17 kJ/mol) is much higher than that for ZP (59.03 kJ/mol). GPC shows that it is the EP rather than the ZP isomer that undergoes anionic living polymerization affording quantitative products of the polymers with well‐controlled molecular weights and narrow molecular weight distributions (1.05 ≤? ≤ 1.09). In addition, THF as polar additive has proved its validity to reduce the molecular weight distribution of poly(ZP) from 1.38 to as low as 1.19. The microstructure and sequence distributions of polypentadiene are characterized by 1H NMR and quantitative 13C NMR. Finally, the distinctive reaction activity of two isomers can be elucidated by two different mechanisms which involve the presence of four forms of zwitterions for EP and the typical [1,5]‐sigmatropic hydrogen‐shift phenomenon for ZP. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2291–2301  相似文献   

20.
The first step of the asynchronous biradical, stepwise biradical, and concerted mechanisms of the 1,3‐butadiene Diels–Alder reactions with both ethene and itself was studied using CASPT2 to determine the influence of basis set and active space on reaction barriers. CASPT2(6,6) with the cc‐pVDZ, 6‐311+G(3df,2p) and cc‐pVTZ basis sets provided the best results with average errors below 3.1 kJ mol?1 with respect to the experimental result. Increasing the active space size also had little effect on the calculated reaction barriers. With respect to experimental results, uncontracted multireference averaged quadratic coupled cluster (MRAQCC) produced superior barriers than internally contracted MRAQCC by 16.1–39.3 kJ mol?1. The inability of CASSCF to locate transition states for some of the cycloadditions across the butadiene‐ethene and butadiene dimerization reactions is also rationalized. CASPT2 suggests a preference for the concerted mechanism of the butadiene‐ethene reaction, however, no basis set yielded a preference for any of the butadiene dimerization pathways. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号