首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 604 毫秒
1.
For the first time, we demonstrate olefin epoxidation promoted by an extended Au surface. The oxidation of styrene to styrene epoxide, benzoic acid, and benzeneacetic acid is promoted on Au(111) covered with 0.2 ML of oxygen atoms. The estimated selectivity for styrene epoxide formation is approximately 53%. Total combustion to CO2 accounts for approximately 20% of the styrene reaction. We propose that styrene epoxide, benzoic acid, and benzeneacetic acid are produced via two possible oxametallacycle intermediates. Our work demonstrates that extended Au is an effective material for olefin oxidation, which has implications for understanding the activity of nanoscale Au catalysts.  相似文献   

2.
Temperature-programmed reaction spectroscopy (TPRS) and direct, isothermal reaction-rate measurements were employed to investigate the oxidation of CO on Pt(111) covered with high concentrations of atomic oxygen. The TPRS results show that oxygen atoms chemisorbed on Pt(111) at coverages just above 0.25 ML (monolayers) are reactive toward coadsorbed CO, producing CO(2) at about 295 K. The uptake of CO on Pt(111) is found to decrease with increasing oxygen coverage beyond 0.25 ML and becomes immeasurable at a surface temperature of 100 K when Pt(111) is partially covered with Pt oxide domains at oxygen coverages above 1.5 ML. The rate of CO oxidation measured as a function of CO beam exposure to the surface exhibits a nearly linear increase toward a maximum for initial oxygen coverages between 0.25 and 0.50 ML and constant surface temperatures between 300 and 500 K. At a fixed CO incident flux, the time required to reach the maximum reaction rate increases as the initial oxygen coverage is increased to 0.50 ML. A time lag prior to the reaction-rate maximum is also observed when Pt oxide domains are present on the surface, but the reaction rate increases more slowly with CO exposure and much longer time lags are observed, indicating that the oxide phase is less reactive toward CO than are chemisorbed oxygen atoms on Pt(111). On the partially oxidized surface, the CO exposure needed to reach the rate maximum increases significantly with increases in both the initial oxygen coverage and the surface temperature. A kinetic model is developed that reproduces the qualitative dependence of the CO oxidation rate on the atomic oxygen coverage and the surface temperature. The model assumes that CO chemisorption and reaction occur only on regions of the surface covered by chemisorbed oxygen atoms and describes the CO chemisorption probability as a decreasing function of the atomic oxygen coverage in the chemisorbed phase. The model also takes into account the migration of oxygen atoms from oxide domains to domains with chemisorbed oxygen atoms. According to the model, the reaction rate initially increases with the CO exposure because the rate of CO chemisorption is enhanced as the coverage of chemisorbed oxygen atoms decreases during reaction. Longer rate delays are predicted for the partially oxidized surface because oxygen migration from the oxide phase maintains high oxygen coverages in the coexisting chemisorbed oxygen phase that hinder CO chemisorption. It is shown that the time evolution of the CO oxidation rate is determined by the relative rates of CO chemisorption and oxygen migration, R(ad) and R(m), respectively, with an increase in the relative rate of oxygen migration acting to inhibit the reaction. We find that the time lag in the reaction rate increases nearly exponentially with the initial oxygen coverage [O](i) (tot) when [O](i) (tot) exceeds a critical value, which is defined as the coverage above which R(ad)R(m) is less than unity at fixed CO incident flux and surface temperature. These results demonstrate that the kinetics for CO oxidation on oxidized Pt(111) is governed by the sensitivity of CO binding and chemisorption on the atomic oxygen coverage and the distribution of surface oxygen phases.  相似文献   

3.
This work presents a periodic density functional study of the epoxidation mechanism of ethylene on Au(111). It is found that, once atomic oxygen is adsorbed on the surface, partial oxidation to ethylene oxide becomes possible. Calculated transition state theory rate constants for the elementary steps involved in the reaction predict that the selectivity of Au(111) toward epoxide is of approximately 40% in good agreement with recent experimental findings for styrene epoxidation on Au(111).  相似文献   

4.
金催化是纳米催化的代表性体系之一,但对金催化作用的理解还存在争议,特别是金颗粒尺寸对其催化作用的影响.金颗粒尺寸减小导致的表面结构主要变化之一是表面配位不饱和金原子密度的增加,因此研究金原子配位结构对其催化作用的影响对于理解金催化作用尺寸依赖性具有重要意义.具有不同配位结构的金颗粒表面可以利用金台阶单晶表面来模拟.我们研究组以同时具有Au(111)平台和Au(111)台阶的Au(997)台阶表面为模型表面,发现Au(111)台阶原子在CO氧化、NO氧化和NO分解反应中表现出与Au(111)平台原子不同的催化性能.负载型Au颗粒催化甲酸氧化反应是重要的Au催化反应之一.本文利用程序升温脱附/反应谱(TDS/TPRS)和X射线光电子能谱(XPS)研究了甲酸在清洁的和原子氧覆盖的Au(997)表面的吸附和氧化反应,观察到Au(111)台阶原子和Au(111)平台原子不同的催化甲酸根氧化反应行为.与甲酸根强相互作用的Au(111)台阶原子表现出比与甲酸根弱相互作用的Au(111)平台原子更高的催化甲酸根与原子氧发生氧化反应的反应活化能.在清洁Au(997)表面,甲酸分子发生可逆的分子吸附和脱附.甲酸分子在Au(111)台阶原子的吸附强于在Au(111)平台原子的吸附. TDS结果表明,吸附在Au(111)台阶原子的甲酸分子的脱附温度在190 K,吸附在Au(111)平台原子的甲酸分子的
  脱附温度在170 K. XPS结果表明,分子吸附甲酸的C 1s和O 1s结合能分别位于289.1和532.8 eV.利用多层NO2的分解反应在Au(997)表面控制制备具有不同原子氧吸附位和覆盖度的原子氧覆盖Au(997)表面,包括氧原子吸附在(111)台阶位的0.02 ML-O(a)/Au(997)、氧原子同时吸附在(111)台阶位和(111)平台位的0.12 ML-O(a)/Au(997)、氧原子和氧岛吸附在(111)平台位和氧原子吸附在(111)台阶位的0.26 ML-O(a)/Au(997). TPRS和XPS结果表明,甲酸分子在105 K与Au(997)表面原子氧物种反应生成甲酸根和羟基物种,但甲酸根物种的进一步氧化反应依赖于Au原子配位结构和各种表面物种的相对覆盖度.在0.02 ML-O(a)/Au(997)表面暴露0.5 L甲酸时, Au(111)台阶位氧原子完全反应,甲酸过量.表面物种是Au(111)台阶位吸附的甲酸根、羟基和甲酸分子.在加热过程中,甲酸分子与羟基在181 K反应生成甲酸根和气相水分子(HCOOH(a)+ OH(a)= H2O + HCOO(a)),甲酸根在340 K发生歧化反应生成气相HCOOH和CO2分子(2HCOO(a)= CO2+ HCOOH).在0.12 ML-O(a)/Au(997)和0.26 ML-O(a)/Au(997)表面暴露0.5 L甲酸时,甲酸分子完全反应,原子氧过量.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基和原子氧.在加热过程中, Au(111)平台位和Au(111)台阶位的甲酸根分别在309和340 K同时发生氧化反应(HCOO(a)+ O(a)= H2O + CO2)和歧化反应(2HCOO(a)= CO2+ HCOOH)生成气相CO2, H2O和HCOOH分子.在0.26 ML-O(a)/Au(997)表面暴露10 L甲酸时,甲酸分子和原子氧均未完全消耗.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基、甲酸分子和原子氧.在加热过程中,除了上述甲酸根的氧化反应和歧化反应,还发生171 K的甲酸分子与羟基的反应(HCOOH(a)+ OH(a)= H2O + HCOO(a))和216 K的羟基并和反应(OH(a)+ OH(a)= H2O + O(a)).  相似文献   

5.
We demonstrate ammonia oxidation promoted by an atomic oxygen precovered Au(111) surface. The selectivity of the catalytic oxidation of ammonia to NO or N2 on Au(111) is tunable by the atomic oxygen coverage. We propose that N2 and NO are produced via the recombination reactions of Nad + Nad and Nad + Oad.  相似文献   

6.
Palladium and Fe3O4 nanoparticles were deposited on N‐(2‐aminoethyl)acetamide‐functionalized cellulose for use in a catalytic reaction. The catalyst was characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, energy‐dispersive X‐ray analysis and transmission electron microscopy, and applied in the oxidation reaction of ethylbenzene at 100 °C using H2O2. Styrene oxide was obtained as the sole product of the oxidation reaction during 24 h. This reaction has some advantages such as one‐pot transformation of ethylbenzene to styrene oxide, high yield, excellent selectivity and magnetically recoverable catalyst. Also, the recovered catalyst could be used in the oxidation reaction four times without decrease in yield. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The partial oxidation of olefins on Ag surfaces has been a long standing problem in surface science and is of great commercial interest. We present a temperature-programmed reaction spectroscopy (TPRS) and X-ray photoelectron spectroscopy (XPS) study of the partial oxidation of styrene on Ag(111). The reaction products are CO2, water, styrene oxide, benzene, and benzoic acid. XPS gives evidence for two different reaction intermediates that we assign to an oxametallacycle and to benzoate. The oxametallacycle seems to be the precursor for both the formation of styrene oxide and the formation of benzoate, and thus, in addition to leading to styrene oxide, also leads to undesired byproducts. The benzoate reacts further to form CO2, benzene, and benzoic acid.  相似文献   

8.
The reaction mechanism for the styrene selective oxidation on the oxygen preadsorbed Cu(111) surface has been studied by the density functional theory calculation with the periodic slab model. The calculated result indicated that the process includes two steps: forming the oxametallacycle intermediate (OMMS) and then producing the products. In addition, it was found that the second step, from OMMS to the product, is the rate‐controlling step, which is similar to the previous work of ethylene selective oxidation. The present result indicated that the selectivity towards the formation of styrene epoxide on Cu(111) is much higher than that on Au(111). More importantly, we found that the mechanism via the OMMS (2) (i.e., the preadsorbed atomic oxygen bound to the CH2 group involved in C6H5? CH?CH2) to produce styrene epoxide is kinetically favored than that of OMMS (1). We also found that the selectivity toward the styrene epoxide formation on Cu2O is similar to that of Cu(111). © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

9.
Sulfur, a pollutant known to poison fuel‐cell electrodes, generally comes from S‐containing species such as hydrogen sulfide (H2S). The S‐containing species become adsorbed on a metal electrode and leave atomic S strongly bound to the metal surface. This surface sulfur is completely removed typically by oxidation with O2 into gaseous SO2. According to our DFT calculations, the oxidation of sulfur at 0.25 ML surface sulfur coverage on pure Pt(111) and Ni(111) metal surfaces is exothermic. The barriers to the formation of SO2 are 0.41 and 1.07 eV, respectively. Various metals combined to form bimetallic surfaces are reported to tune the catalytic capabilities toward some reactions. Our results show that it is more difficult to remove surface sulfur from a Ni@Pt(111) surface with reaction barrier 1.86 eV for SO2 formation than from a Pt@Ni(111) surface (0.13 eV). This result is in good agreement with the statement that bimetallic surfaces could demonstrate more or less activity than to pure metal surfaces by comparing electronic and structural effects. Furthermore, by calculating the reaction free energies we found that the sulfur oxidation reaction on the Pt@Ni(111) surface exhibits the best spontaneity of SO2 desorption at either room temperature or high temperatures.  相似文献   

10.
采用密度泛函理论(DFT)对苯乙烯在Ag(110)表面和Ag(111)表面的环氧化反应进行了计算研究. 经计算, 在Ag(110)表面预吸附氧原子更易吸附在3 重穴位(3h), 吸附能为-3.59 eV; 在Ag(111)表面预吸附氧原子的最稳定吸附位是fcc 位, 吸附能为-3.69 eV. 苯乙烯的环氧化反应过程首先经过一个金属中间体, 然后再进一步反应变为产物, 其中经过直链中间体较支链中间体更加有利. Ag(110)面的反应活化能一般大于Ag(111)面的, 并且微观动力学模拟结果表明, Ag(111)表面生成环氧苯乙烷的选择性要明显高于Ag(110)表面(0.38 与 0.003), 原因是Ag(111)面环氧化反应活化能小于苯乙醛及燃烧中间体的活化能, 而在Ag(110)上正相反.  相似文献   

11.
Partial oxidation of propene is promoted by Au following deposition of atomic oxygen (0.3 ML) via O3 decomposition on Au(111) at 200 K. Several partial oxidation products--acrolein, acrylic acid, and carbon suboxide (O=C=C=C=O)-are produced in competition with combustion to CO2 and H2O. Acrolein is the primary partial oxidation product, and it is further oxidized to the other products by excess oxygen. We propose that acrolein is derived from allyloxy intermediate that is formed via insertion of oxygen into the allylic C-H bond. While no propene epoxide formation is detected from oxidation of C3H6, a small amount of epoxidation is observed during reaction of C3D6 and CD3CH=CH2. These results are strong indications that small changes in the energy required for allylic C-H activation, in this case due to a kinetic isotope effect, may dramatically change the selectivity; thus, small modifications of the properties of oxygen on Au may lead to the more desirable epoxidation process. Our results are discussed in the context of the origin of activity of Au-based catalysts.  相似文献   

12.
Ultrathin (monolayer) films of transition metal oxides grown on metal substrates have recently received considerable attention as promising catalytic materials, in particular for low‐temperature CO oxidation. The reaction rate on such systems often increases when the film only partially covers the support, and the effect is commonly attributed to the formation of active sites at the metal/oxide boundary. By studying the structure and reactivity of FeO(111) films on Pt(111), it is shown that, independent of the film coverage, CO oxidation takes place at the interface between reduced and oxidized phases in the oxide film formed under reaction conditions. The promotional role of a metal support is to ease formation of the reduced phase by reaction between CO adsorbed on metal and oxygen at the oxide island edge.  相似文献   

13.
Keggin型钼钒磷杂多酸催化剂上丙烷选择氧化性能的研究   总被引:6,自引:1,他引:5  
李秀凯  雷宇  江桥  赵静  季伟捷  张志炳  陈懿 《化学学报》2005,63(12):1049-1054
系统研究了不同数目V5+取代的钼钒磷杂多酸H3+nPMo12-nVnO40 (n=0~4)催化剂上丙烷选择氧化反应性能. 通过BET, IR, TPR, 紫外-可见光谱等表征手段对催化剂的理化性质进行了考察, 并对催化剂的结构-性能关系进行了初步关联. 在杂多酸的一级结构中, V5+对Mo6+的取代不仅改变了杂多阴离子金属-氧桥的键强以及晶格氧的插入能力, 而且也相应地调变了样品的酸量. 催化剂活性随V5+取代数量的递增而增强; 适宜数量的V5+取代提高了含氧酸产物的选择性, 而过量的V5+取代则导致部分氧化产物的深度氧化. 考察了在Keggin型杂多酸二级结构上引入钒物种的影响, 也即将钒物种(VO)2+作为抗衡离子取代部分质子以调变催化剂的结构与性质. 实验表明, 处于一级结构和二级结构[(VO)2+抗衡离子]中的V在反应中均可离析出少量V2O5物种. 适宜量的(VO)2+物种以及离析出来的少量V2O5物种可能均对催化剂的性能有贡献. 显然, 钒在不同位置的价态变化以及形态的不同, 会导致催化性能的相应改变.  相似文献   

14.
Pd/羧基功能化离子液体选择性催化氧化苯乙烯   总被引:1,自引:0,他引:1  
 利用羧基对咪唑型离子液体的阳离子进行功能化,得到一系列具有不同羧基数目及与不同阴离子搭配的N-羧基功能化咪唑离子液体(TSILs), 进而构筑PdCl2/TSILs催化剂体系. 以过氧化氢为氧化剂,将PdCl2/TSILs用于选择性催化氧化苯乙烯合成苯乙酮. 研究结果表明, PdCl2/TSILs催化体系对目标反应具有理想的催化性能,羧基功能化离子液体的阳离子及其搭配的阴离子对苯乙酮的选择性和产率均有显著的影响. 阳离子的羧基数目越多,阳离子的不对称性越高, PdCl2/TSILs催化剂体系的活性越好. 含有相同阳离子的PdCl2/TSILs催化剂体系,其催化性能按照阴离子PF-6<H2PO-4<Cl-<BF-4的顺序递增且与其酸强度顺序相反. 含有三羧基的功能化离子液体与PdCl2构筑的催化剂体系具有最佳的催化性能,在55 ℃下,该催化剂体系的转换频率值达到125 h-1, 苯乙烯可以完全转化且苯乙酮的选择性为91%.  相似文献   

15.
In order to elucidate electronic effects on the oxidation of CO on small Ru clusters, we investigated this reaction on well defined Ru/Au(111) model systems via parallel in-situ STM studies of the structure and electrochemical deposition of Ru on Au(111) in H2SO4 solution and cyclic voltammetry of CO monolayer oxidation on these surfaces. The Ru deposit consists of nanoscale islands, which coalesce with increasing coverage. The Ru saturation coverage depends on the deposition potential, resulting in Ru submonolayer (>0.1 V), (defective) monolayer (≥−0.1 V), and multilayer films (<−0.1 V). At potentials >0.6 V irreversible formation of Ru oxide/hydroxide species is observed, which can be partly reduced in the range 0.4 to 0.0 V. CO stripping commences at ≈0.1 V and occurs over a broad potential range. From the stripping charge a local CO coverage on the Ru monolayer islands of 0.7 ML was estimated. The observed influence of the morphology of the Ru deposit on the CO stripping voltammetry is explained by (local) variations in the CO adsorption energy due to electronic modifications of the Ru film.  相似文献   

16.
Nitrogen (N)‐, boron (B)‐, and boron,nitrogen (B,N)‐doped graphene (G) act as carbocatalysts, promoting the aerobic oxidation of the benzylic positions of aromatic hydrocarbons and cyclooctane to the corresponding alcohol/ketone mixture with more than 90 % selectivity. The most active material was the co‐doped (B,N)G, which, in the absence of solvent and with a substrate/(B,N)G ratio of 200, achieved 50 % tetralin conversion in 24 h with a alcohol/ketone selectivity of 80 %. An FT‐Raman spectroscopic study of a sample of (B,N)G heated at 100 °C in the presence of oxygen revealed new bands that disappeared upon evacuation and that have been attributed to hydroperoxide‐like species formed on the G sheet based on the isotopic shift of the peak from 819 to 779 cm?1 when 18O2 was used as the oxidizing reagent. Furthermore, (B)G and (N)G exhibited high catalytic activity in the aerobic oxidation of styrene to benzaldehyde (BA) in 4 h. However, the product distribution changed over time and after 10 h a significant percentage of styrene oxide (SO) was observed under the same conditions. The use of doped G as catalyst appears to offer broad scope for the aerobic oxidation of benzylic compounds and styrene, for which low catalyst loading, mild reaction temperatures, and no additional solvents are required.  相似文献   

17.
The activation of dioxygen for selective oxidation of organic molecules is a major catalytic challenge. Inspired by the activity of nitrogen‐doped carbons in electrocatalytic oxygen reduction, we combined such a carbon with metal‐oxide catalysts to yield cooperative catalysts. These simple materials boost the catalytic oxidation of several alcohols, using molecular oxygen at atmospheric pressure and low temperature (80 °C). Cobalt and copper oxide demonstrate the highest activities. The high activity and selectivity of these catalysts arises from the cooperative action of their components, as proven by various control experiments and spectroscopic techniques. We propose that the reaction should not be viewed as occurring at an ‘active site’, but rather at an ‘active doughnut’–the volume surrounding the base of a carbon‐supported metal‐oxide particle.  相似文献   

18.
Oxidation of cyclohexene and styrene with sodium periodate and tetra‐n‐butylammonium periodate (TBAP) catalyzed by MnT(3‐MePy)P(OAc), MnT(4‐SO3)PP(OAc) and MnTPP(OAc) has been studied in water, methanol, acetonitrile and dichloromethane as solvents. The results show significant dependence of the product distribution on the type of solvent and the electronic nature of the aryl substituents introduced at the porphyrin periphery. While the oxidation of cyclohexene and styrene in the presence of MnT(3‐MePy)P(OAc) and MnTPP(OAc) in water (also in methanol) gave the corresponding epoxides as nearly the sole product, performing the reactions in the presence of MnT(4‐SO3)PP(OAc) yielded the products of allylic oxidation, cyclohexene‐2‐ol and cyclohexene‐2‐one and acetophenone as the major products. In the case of styrene, performing the reaction in the presence of MnT(4‐SO3)PP(OAc), MnT(3‐MePy)P(OAc) and MnTPP(OAc) in acetonitrile gave a mixture of styrene oxide and acetophenone as the products. Under the same conditions, the oxidation of cyclohexene afforded cyclohexene oxide as approximately the exclusive product. Furthermore, the oxidation of olefins in dichloromethane gave the corresponding epoxide as the exclusive products. The product distributions observed in the protic and aprotic solvents were used to provide indirect evidence on the relative contribution and reactivity of high valent manganese oxo and periodato Mn(III) porphyrin species to the oxidation reactions.  相似文献   

19.
Selective dehydrogenation of the biomass‐derived lignan hydroxymatairesinol (HMR) to oxomatairesinol (oxoMAT) was studied over an Au/Al2O3 catalyst. The reaction was carried out in a semi‐batch glass reactor at 343 K under two different gas atmospheres, namely produced through synthetic air or nitrogen. The studied reaction is, in fact, an example of secondary‐alcohol oxidation over an Au catalyst. Thus, the investigated reaction mechanism of HMR oxidative dehydrogenation is useful for the fundamental understanding of other secondary‐alcohol dehydrogenation over Au surfaces. To investigate the elementary catalytic steps ruling both oxygen‐free‐ and oxygen‐assisted dehydrogenation of HMR to oxoMAT, the reactions were mimicked in a vacuum over an Au28 cluster. Adsorption of the involved molecular species—O2, three different HMR diastereomers (namely, one SRR and two RRR forms), and the oxoMAT derivative—were also studied at the DFT level. In particular, the energetic and structural differences between SRR‐HMR and RRR‐HMR diastereomers on the Au28 cluster were analyzed, following different reaction pathways for the HMR dehydrogenation that occur in presence or absence of oxygen. The corresponding mechanisms explain the higher rates of the experimentally observed oxygen‐assisted reaction, mostly depending on the involved HMR diastereomer surface conformations. The role of the support was also elucidated, considering a very simple Au28 charged model that explains the experimentally observed high reactivity of the Au/Al2O3 catalyst.  相似文献   

20.
We present evidence for the formation of transient hydroxyls from the reaction of water with atomic oxygen on Au(111) and investigate the effect of adsorbed oxygen on the hydrogen bonding of water. Water is evolved in peaks at 175 and 195 K in temperature programed reaction experiments following adsorption of water on oxygen-covered Au(111). The peak at 175 K is ascribed to sublimation of multilayers of water, whereas the peak at 195 K is associated with oxygen-stabilized water or a water-hydroxyl surface complex. Infrared reflection absorption spectra are consistent with the presence of molecular water over the entire range of coverages studied, indicating that isolated stable hydroxyls are not formed. Isotopic exchange of adsorbed (16)O with H(2)(18)O following adsorption and subsequent temperature programed reaction, however, indicates that transient OH species are formed. The extent of oxygen exchange was considerable--up to 70%. The degree of oxygen exchange depends on the initial coverage of oxygen, the surface temperature when preparing oxygen adatoms, and the H(2)(18)O coverage. The hydroxyls are short-lived, forming and disproportionating multiple times before water desorption during temperature programed reaction. It was also found that chemisorbed oxygen is critical in the formation of hydroxyls and stabilizing water, whereas gold oxide does not contribute to these effects. These results identify transient hydroxyls as species that could play a critical role in oxidative chemical reactions on gold, especially in ambient water vapor. The crystallinity of adsorbed water also depended on the degree of surface ordering and chemical modification based on scanning tunneling microscopy and infrared spectra. These results demonstrate that oxidation of interfaces has a major impact on their interaction with water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号