首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Using 1H NMR spectroscopy and steady-state and time-resolved electronic spectroscopy, the optical properties of mono-and bis(styryl)pyridinium perchlorates and their complexes with Mg2+, Ba2+ cations were studied. The stability constants of the complexes were determined using spectrophotometric titration. The formation of inclusion complexes for Mg2+ and sandwich type complexes for Ba2+ results in fluorescence enhancement and increases the lifetimes of the excited states of the initial bis-styryl ligands. The variation of position of the styryl fragment in the pyridinium aromatic ring gives rise to photochromic crown ethers with different optical and photophysical characteristics and is also an easy route to bis(crown-ethers) of symmetrical and unsymmetrical structure. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2092–2100, November, 2007.  相似文献   

2.
A novel way of synthesis is developed for the Ba2+ selective neutral Ionophore 2a : 2,2′‐[1,2‐phenylenebis(oxyethane‐2,1‐diyloxy)]bis(N‐benzyl‐N‐phenylacetamide) and its methyl ( 2b ), buthyl ( 2c ), and hexyl ( 2d ) derivatives. Ba2+ selective electrodes based on Ionophores 2a – d are compared with those with commonly used Ionophore 1 : N,N,N′,N′‐tetracyclohexyl‐oxybis(o‐phenyleneoxy) diacetamide. It is shown that Ionophores 2a – d , particularly 2b , are superior for measurements of Ba2+ in the presence of Ca2+, and in acidic solutions. Segmented sandwich membrane studies suggest formation of complexes IL22+ for Ba2+, Ca2+ and Mg2+ ions with Ionophore 2b , while H+ ions apparently form complexes H2L2+. The values of the complex formation constants are consistent with the selectivity coefficients.  相似文献   

3.
An (E)/(Z) mixture (3 : 2) of 7‐benzylidenecycloocta‐1,3,5‐triene ( 5 ) is obtained when 1‐benzylcycloocta‐1,3,5,7‐tetraene ( 7 ), prepared by an improved procedure, is treated with t‐BuOK in THF. Alternatively, a ca. 9 : 1 mixture (E)/(Z)‐ 5 can be prepared in a Wittig reaction involving benzaldehyde and cycloocta‐2,4,6‐trien‐1‐ylidenetriphenylphoshorane ( 9 ). Treatment of (E)/(Z)‐ 5 88 : 12 with ethenetetracarbonitrile (TCNE) gave a complex mixture of products, from which seven mono‐adducts and two bis‐adducts were isolated (Sect. 2.2.1). Of the mono‐adducts, four are π4+π2 adducts: two ((E)‐ and (Z)‐isomers) are derived from valence tautomers of the two isomers of (E)/(Z)‐ 5 , while it is tentatively suggested that the other two (again (E)‐ and (Z)‐isomers) are formed from the intermediacy of a pentadienyl zwitterion (Sect. 2.3). The remaining three mono‐adducts, two of which are epimers, are π8+π2 adducts. It is suggested that they are derived from the intermediacy of homotropylium zwitterions (Sect. 2.3). For the two bis‐adducts, it is postulated that they are derived from an initial π2+π2 cycloaddition involving the homotropylium zwitterions followed by π4+π2 cycloaddition to the valence tautomer of each of the π2+π2 cycloadducts. With 4‐phenyl‐3H‐1,2,4‐triazole‐3,5(4H)‐dione ( 6 ), (E)/(Z)‐ 5 91 : 9 yielded two π4+π2 cycloadducts ((E)‐ and (Z)‐isomers) as well as two epimeric π8+π2 cycloadducts (Sect. 2.2.2). The intermediacy of pentadienyl (tentative suggestion) and homotropylium zwitterions accounts for the formation of the products (Sect. 2.3).  相似文献   

4.
The structures of two salts of flunarizine, namely 1‐bis[(4‐fluorophenyl)methyl]‐4‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazine, C26H26F2N2, are reported. In flunarizinium nicotinate {systematic name: 4‐bis[(4‐fluorophenyl)methyl]‐1‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazin‐1‐ium pyridine‐3‐carboxylate}, C26H27F2N2+·C6H4NO2, (I), the two ionic components are linked by a short charge‐assisted N—H...O hydrogen bond. The ion pairs are linked into a three‐dimensional framework structure by three independent C—H...O hydrogen bonds, augmented by C—H...π(arene) hydrogen bonds and an aromatic π–π stacking interaction. In flunarizinediium bis(4‐toluenesulfonate) dihydrate {systematic name: 1‐[bis(4‐fluorophenyl)methyl]‐4‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazine‐1,4‐diium bis(4‐methylbenzenesulfonate) dihydrate}, C26H28F2N22+·2C7H7O3S·2H2O, (II), one of the anions is disordered over two sites with occupancies of 0.832 (6) and 0.168 (6). The five independent components are linked into ribbons by two independent N—H...O hydrogen bonds and four independent O—H...O hydrogen bonds, and these ribbons are linked to form a three‐dimensional framework by two independent C—H...O hydrogen bonds, but C—H...π(arene) hydrogen bonds and aromatic π–π stacking interactions are absent from the structure of (II). Comparisons are made with some related structures.  相似文献   

5.
Novel optically active substituted acetylenes HC? CCH2CR1(CO2CH3)NHR2 [(S)‐/(R)‐ 1 : R1 = H, R2 = Boc, (S)‐ 2 : R1 = CH3, R2 = Boc, (S)‐ 3 : R1 = H, R2 = Fmoc, (S)‐ 4 : R1 = CH3, R2 = Fmoc (Boc = tert‐butoxycarbonyl, Fmoc = 9‐fluorenylmethoxycarbonyl)] were synthesized from α‐propargylglycine and α‐propargylalanine, and polymerized with a rhodium catalyst to provide the polymers with number‐average molecular weights of 2400–38,900 in good yields. Polarimetric, circular dichroism (CD), and UV–vis spectroscopic analyses indicated that poly[(S)‐ 1 ], poly[(R)‐ 1 ], and poly[(S)‐ 4 ] formed predominantly one‐handed helical structures both in polar and nonpolar solvents. Poly[(S)‐ 1a ] carrying unprotected carboxy groups was obtained by alkaline hydrolysis of poly[(S)‐ 1 ], and poly[(S)‐ 4b ] carrying unprotected amino groups was obtained by removal of Fmoc groups of poly[(S)‐ 4 ] using piperidine. Poly[(S)‐ 1a ] and poly[(S)‐ 4b ] also exhibited clear CD signals, which were different from those of the precursors, poly[(S)‐ 1 ] and poly[(S)‐ 4 ]. The solution‐state IR measurement revealed the presence of intramolecular hydrogen bonding between the carbamate groups of poly[(S)‐ 1 ] and poly[(S)‐ 1a ]. The plus CD signal of poly[(S)‐ 1a ] turned into minus one on addition of alkali hydroxides and tetrabutylammonium fluoride, accompanying the red‐shift of λmax. The degree of λmax shift became large as the size of cation of the additive. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
The stoichiometry of complexation of crown ether styryl dyes with Mg2+, Ca2+, and Ba2+ ions and the dependence of the stability constants of these complexes on the length of theN-sulfoalkyl substituent were investigated. Introduction of a terminal sulfo group into theN-ethyl substituent had but a small effect on the stability constant for the complexes with 1 : I stoichiometry. Increase in the length of theN-substituent by one or two methylene groups resulted in a jumpwise rise of this constant. The effect observed was attributed to the formation of the intramolecular ion pair. The dimerization constant for Mg2+ complexes increased dramatically when passing from the sulfopropylN-substituent to the sulfobutyl one. The increase in the constant results from the decrease in steric strains in the dimeric complex.For Part 16, see Ref. ITranslated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 605–613, March, 1996.  相似文献   

7.
(2SR,4RS)‐7‐Chloro‐2‐exo‐[(E)‐styryl]‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C18H16ClNO, (I), crystallizes as a racemic twin in the space group P21 and the molecules are linked into a chain of edge‐fused R33(9) rings by a combination of C—H...O and C—H...N hydrogen bonds. The diastereoisomer (2RS,4RS)‐7‐chloro‐2‐endo‐[(E)‐styryl]‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, (II), also crystallizes as a racemic twin, but in the space group P212121, and a two‐centre C—H...N hydrogen bond and a three‐centre C—H...(O,N) hydrogen bond combine to link the molecules into a complex chain of rings. In (2R,4R)‐7‐fluoro‐2‐endo‐[(E)‐styryl]‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C18H16FNO, (III), which is not isomorphous with (II), the molecules are linked by a single C—H...O hydrogen bond into simple chains, but the molecular arrangements in (II) and (III) are nonetheless very similar. The significance of this study lies in its observation of the variations in molecular configuration and conformation, and in the variation in the supramolecular aggregation, consequent upon modest changes in the peripheral substituents.  相似文献   

8.
The complexation reactions between Mg2+, Ca2+, Sr2+ and Ba2+ cations with the macrocyclic ligand, 18-Crown-6 (l8C6) in water–methanol (MeOH) binary systems as well as the complexation reactions between Ca2+ and Sr2+ cations with 18C6 in water–ethanol (EtOH) binary mixtures have been studied at different temperatures using conductometric method. The conductance data show that the stoichiometry of all the complexes is 1:1. It was found that the stability of 18C6 complexes with Mg2+, Ca2+, Sr2+ and Ba2+ cations is sensitive to solvent composition and in all cases, a non-linear behaviour was observed for the variation of log K f of the complexes versus the composition of the mixed solvents. In some cases, the stability order is changed with changing the composition of the mixed solvents. The selectivity order of 18C6 for the metal cations in pure methanol is: Ba2+ > Sr2+ > Ca2+ > Mg2+. The values of thermodynamic parameters (Δ H c ° and Δ S c °) for formation of 18C6–Mg2+, 18C6–Ca2+, 18C6–Sr2+ and 18C6–Ba2+complexes were obtained from temperature dependence of the stability constants. The obtained results show that the values of (Δ H c ° and Δ S c °) for formation of these complexes are quite sensitive to the nature and composition of the mixed solvent, but they do not vary monotonically with the solvent composition.This revised version was published online in July 2005 with a corrected issue number.  相似文献   

9.
Treatment of ethyl (E)‐5,5‐bis[(benzyloxy)methyl]‐8‐(N,N‐diethylcarbamoyl)‐2‐octen‐7‐ynoate with an iron reagent generated from FeCl2 and tBuMgCl in a ratio of 1:4 (abbreviated as FeCl2/4 tBuMgCl) afforded ethyl [4,4‐bis[(benzyloxy)methyl]‐2‐[(E)‐(N,N‐diethylcarbamoyl)methylene]cyclopent‐1‐yl]acetate in good yield. Deuteriolysis of an identical reaction mixture afforded the bis‐deuterated product ethyl [4,4‐bis[(benzyloxy)methyl]‐2‐[(E)‐(N,N‐diethylcarbamoyl)deuteriomethylene]cyclopent‐1‐yl]deuterioacetate, thus confirming the existence of the corresponding dimetalated intermediate. The latter intermediate can react with halogens or aldehydes to facilitate further synthetic transformations. The amount of FeCl2 was reduced to catalytic levels (10 mol % relative to enyne), and catalytic cyclizations of this sort proceeded with yields comparable to those of the aforementioned stoichiometric reactions. The cyclization of diethyl (E,E)‐2,7‐nonadienedioate with a stoichiometric amount of FeCl2/4 tBuMgCl, followed by the addition of sBuOH as a proton source, afforded a mixture of 2‐(ethoxycarbonyl)‐3‐bicyclo[3.3.0]octanone and its enol form in good yield. The use of aldehyde or ketone in place of sBuOH afforded 2‐(ethoxycarbonyl)‐3‐bicyclo[3.3.0]octanone, which has an additional hydroxyalkyl side chain. Additionally, the metalation of a carbon–carbon unsaturated bond in N,N‐diethyl‐5,5‐bis[(benzyloxy)methyl]‐7,8‐epoxy‐2‐octynamide or (E)‐3,3‐dimethyl‐6‐(N,N‐diethylcarbamoyl)‐5‐hexenyl p‐toluenesulfonate with FeCl2/4 tBuMgCl or FeCl2/4 PhMgBr was followed by an intramolecular alkylation with an epoxide or alkyl p‐toluenesulfonate to afford 5,5‐bis[(benzyloxy)methyl]‐3‐[(E)‐(N,N‐diethylcarbamoyl)methylene]‐1‐cyclohexanol or N,N‐diethyl(3,3‐dimethylcyclopentyl)acetamide after hydrolysis. In both cases, the remaining metalated portion α to the amide group was confirmed by deuteriolysis and could be utilized for an alkylation with methyl iodide.  相似文献   

10.
We report on conductometric study of complexation between benzylbisthiosemicarbazone [(2E,2′E)-2,2′-(1,2-diphenylethane-1,2-diylidene)bis(hydrazine-1-carbothioamide)] with Zn2+, Cr3+, Co2+, and Ni2+ cations at different temperatures in acetonitrile-dimethylformamide binary solvents of varied composition. The equilibrium constant and standard thermodynamic parameters (Δc H 0 and Δc S 0) of the complexes formation have been determined and found to be dependent on the binary solvent composition, the metal ion nature, and temperature.  相似文献   

11.
When treated with LiNiPr2 (LDA) at ?78°, 1‐[(methylsulfanyl)methyl]‐2‐[(1Z,3E)‐4‐phenylbuta‐1,3‐dien‐1‐yl]benzene easily cyclized to form benzocycloheptenyl anion, which successively underwent intramolecular nucleophilic substitution to give a cyclopropanaphthalene. Similar LDA‐mediated cyclization also occurred for 4‐phenyl‐ or 4‐methyl‐substituted 1‐[2‐(methoxymethyl)phenyl]buta‐1,3‐dienes to furnish the corresponding benzocycloheptenes and cyclopropanaphthalenes. A 4‐tert‐butyl analog also underwent LDA‐mediated cyclization to give a benzocycloheptene, but not a cyclopropanaphthalene.  相似文献   

12.
13.
Reduction of 1,2-Bis[(Z)-(2-nitrophenyl)-NNO-azoxy]benzene1: Synthesis of Cyclotrisazobenzene ( = (5E,6aZ,11E,12aZ,17E,18aZ)-5,6,11,12,17,18-Hexaazatribenzo[aei][1,3,5,7,9,11]cyclododeca-hexaene) Na2S reduction of 1,2-bis[(Z)-(2-nitrophenyl)-NNO-azoxy]benzene ( 2 ) yielded 3 deoxygenated products: the (known) red 2,2′-((E,E)-1,2-phenylenbisazo)dianiline ( 3 , 23%), the orange 2-[2-((E)-2-aminophenylazo)phenyl]-2H-benzotriazol ( 4 , 55%) and the colorless 2,2′-(1,2-phenylene)di-2H-benzotriazol ( 5 , 13%). The constitutions of 3 – 5 and of 6 , the N-acetyl derivative of 4 , were deduced from their 1H-NMR spectra (chemical shifts, couplings, and symmetry properties), and the configurations of 3 , 4 , and 6 at their N,N-double bonds are assumed to be the same as in 2 . Oxidation of 3 with 2 mol-equiv. of Pb(OAc)4 afforded 5 (47%) and a novel, highly symmetrical macrocycle, called cyclotrisazobenzene ( 7 , 24%). The constitution of 7 as a tribenzo-hexaaza[12]annulene and its (E)-configuration at the N,N-bonds was confirmed by X-ray analysis. The molecular symmetry expressed by the 1H-, 13C- and 15N-NMR spectra of 7 reveals a rapid torsional motion around the six N,C bonds. This implies that the N,N-double bonds in the cyclic 12π-electron system (or 24π-electron system if the benzene rings are included) of 7 are highly localized.  相似文献   

14.
Polymerization of a functionalized acetylene was successfully performed using a Rh complex as the catalyst and triethylamine as a base yielding poly{(E,E,E)‐4‐[4‐[4‐(3,4,5‐tridodecyloxystyryl)‐2,5‐bis((S)‐2‐methylbutoxy)styryl]‐2,5‐bis((S)‐2‐methylbutoxy)styryl]phenylacetylene} ( PAOPV ). Films of PAOPV mixed with a fullerene derivative showed electron transfer from the OPV oligomer donor to the fullerene acceptor. The films could be furthermore used in photovoltaic devices.  相似文献   

15.
The binuclear complex bis(2,6‐di‐tert‐butyl‐4‐methylphenolato)‐1κO ,2κO‐(1,2‐dimethoxyethane‐1κ2O ,O ′)bis(μ‐phenylmethanolato‐1:2κ2O :O )(tetrahydrofuran‐2κO )dimagnesium(II), [Mg2(C7H7O)2(C15H23O)2(C4H8O)(C4H10O2)] or [(BHT)(DME)Mg(μ‐OBn)2Mg(THF)(BHT)], (I), was obtained from the complex [(BHT)Mg(μ‐OBn)(THF)]2 by substitution of one tetrahydrofuran (THF) molecule with 1,2‐dimethoxyethane (DME) in toluene (BHT is O‐2,6‐t Bu2‐4‐MeC6H4 and Bn is benzyl). The trinuclear complex bis(2,6‐di‐tert‐butyl‐4‐methylphenolato)‐1κO ,3κO‐tetrakis(μ‐2‐methylphenolato)‐1:2κ4O :O ;2:3κ4O :O‐bis(tetrahydrofuran)‐1κO ,3κO‐trimagnesium(II), [Mg3(C7H7O)4(C15H23O)2(C4H8O)2] or [(BHT)2(μ‐O‐2‐MeC6H4)4(THF)2Mg3], (II), was formed from a mixture of Bu2Mg, [(BHT)Mg(n Bu)(THF)2] and 2‐methylphenol. An unusual tetranuclear complex, bis(μ3‐2‐aminoethanolato‐κ4O :O :O ,N )tetrakis(μ2‐2‐aminoethanolato‐κ3O :O ,N )bis(2,6‐di‐tert‐butyl‐4‐methylphenolato‐κO )tetramagnesium(II), [Mg4(C2H6NO)6(C15H23O)2] or Mg4(BHT)2(OCH2CH2NH2)6, (III), resulted from the reaction between (BHT)2Mg(THF)2 and 2‐aminoethanol. A polymerization test demonstrated the ability of (III) to catalyse the ring‐opening polymerization of ϵ‐caprolactone without activation by alcohol. In all three complexes (I)–(III), the BHT ligand demonstrates the terminal κO‐coordination mode. Complexes (I), (II) and (III) have binuclear rhomboid Mg2O2, trinuclear chain‐like Mg3O4 and bicubic Mg4O6 cores, respectively. A survey of the literature on known polynuclear Mgx Oy core types for ArO–Mg complexes is also presented.  相似文献   

16.
The reaction of 1‐(trimethylsilyloxy)cyclopentene ( 9 ) with (±)‐1,3,5‐triisopropyl‐2‐(1‐(RS)‐{[(1E)‐2‐methylpenta‐1,3‐dienyl]oxy}ethyl)benzene ((±)‐ 4a ) in SO2/CH2Cl2 containing (CF3SO2)2NH, followed by treatment with Bu4NF and MeI gave a 3.0 : 1 mixture of (±)‐(2RS)‐2{(1RS,2Z,4SR)‐2‐methyl‐4‐(methylsulfonyl)‐1‐[(RS)‐1‐(2,4,6‐triisopropylphenyl)ethoxy]pent‐2‐en‐1‐yl}cyclopentanone ((±)‐ 10 ) and (±)‐(2RS)‐2‐{(1RS,2Z)‐2‐methyl‐4‐[(SR)‐methylsulfonyl]‐1‐[(SR)‐1‐(2,4,6‐triisopropylphenyl)ethoxy]pent‐2‐en‐1‐yl}cyclopentanone ((±)‐ 11 ). Similarly, enantiomerically pure dienyl ether (−)‐(1S)‐ 4a reacted with 1‐(trimethylsilyloxy)cyclohexene ( 12 ) to give a 14.1 : 1 mixture of (−)‐(2S)‐2‐{(1S,2Z,4R)‐2‐methyl‐4‐(methylsulfonyl)‐1‐[(S)‐1‐(2,4,6‐triisopropylphenyl)ethoxy]pent‐2‐enyl}cyclohexanone ((−)‐ 13a ) and its diastereoisomer 14a with (1S,2R,4R) or (1R,2S,4S) configuration. Structures of (±)‐ 10 , (±)‐ 11 , and (−)‐ 13a were established by single‐crystal X‐ray crystallography. Poor diastereoselectivities were observed with the (E,E)‐2‐methylpenta‐1,3‐diene‐1‐ylethers (+)‐ 4b and (−)‐ 4c bearing ( 1 S )‐1‐phenylethyl and (1S)‐1‐(pentafluorophenyl)ethyl groups instead of the Greene's auxiliary ((1S)‐(2,4,6‐triisopropylphenyl)ethyl group). The results demonstrate that high α/βsyn and asymmetric induction (due to the chiral auxiliary) can be obtained in the four‐component syntheses of the β‐alkoxy ketones. The method generates enantiomerically pure polyfunctional methyl sulfones bearing three chiral centers on C‐atoms and one (Z)‐alkene moiety.  相似文献   

17.
‘Slipped’ π?π stacking between flexible macrocycle 14+ (cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](1,4-dimethylene benzene)) and neutral small molecules induce one-dimensional (1D) ‘sandwich’ chain self-assembly. Unlike most of the reported π?π stacking system, the 1D “sandwich” chain expands with the direction parallel to stacking π surfaces on 14+ and that on molecule 2, 3, 4 or 5 (2 = p-xylene, 3 = benzene-1,4-diamine, 4 = 4,4′-bipyridine, 5 = [1,1′-biphenyl]-4,4′-diol). Moreover, the π?π stacking modes of 1D self-assembly are seriously small molecule adduct dependent. Combined with the other weak interactions (e.g. intermolecular hydrogen bonding), the new substrate design and control strategy can expand the 1D ‘sandwich’ chain (e.g. [14+·4]n) into higher order structure (e.g. two-dimensional (2D) network [14+·4·6]n, 6 = hydroquinone) even in large scale (~280 mg). This 2D network structure, which keeps stable under 423 K, shows highly selective gas absorption of CO2 over N2.  相似文献   

18.
Polarographic and cyclovoltammetric measurements on the perchlorates of Li+, Na+, K+, Rb+, Cs+, Tl+, Ba2+ and Ni2+ as well as on the trifluoromethane sulfonates of Zn2+, Cd2+, Pb2+, Cu2+, Cu+, Mn2+ and Co2+ were carried out. The data allowed the evaluation of the different donor behavior of pyridine towards hard, border line and soft cations. The conclusions drawn from electrochemical investigations were supported by Gibbs energies of transfer for cations, which were derived from both electrochemical measurements based on the bis(biphenyl)chromium assumption and from solubility studies based on the tetraphenylarsonium tetraphenylborate assumption. The acceptor properties of pyridine were obtained from the solvatochromic dyes bis(cyano)bis(1,10-phenanthroline)iron(II) and bis(cyano)bis(3,4,7,8-tetramethyl-1,10-phenanthroline)iron(II) and the results were compared with the acceptor number and the E T -value.  相似文献   

19.
To study the effect of double-bond shifts (DBS) in different type of heptalenes linked to extended π-systems, several di-π-substituted heptalenes were synthesized. 6-[(E)-Styryl]heptalene-dicarboxylate 4 was smoothly converted to 1-(chloromethyl)heptalene-dicarboxylate 5 by treatment with t-BuOK and C2Cl6 in THF at −78°. The one-pot reaction of 5 and P(OEt)3 in the presence of NaI, followed by Wittig-Horner reaction, afforded the 1,6-di-π-substituted heptalene 6 . The reaction of 6-[(1E,3E)-4-phenylbuta-1,3-dienyl]heptalenes 7 or 15 with t-BuOK and benzaldehyde in THF led to the formation of the 1,6-di-π-substituted heptalenes 13 or 16 , together with transesterification products 14 or 17 . The transformation of the MeOCO group at C(4) of 6-[(E)-styryl]heptalene-dicarboxylate 4 to a phenylbuta-1,3-dienyl substituent afforded the 4,6-di-π-substituted heptalene 21a , which is in thermal equilibrium with its DBS isomer 21b in solution. Oxidation of heptalene 22 with SeO2 in dioxane gave carbaldehyde 23 , which was then subjected to a Wittig reaction to give the 6,9-di-π-substituted heptalene-dicarboxylate 24 .  相似文献   

20.
Treatment of a range of bis(thiourea) ligands with inert organometallic transition‐metal ions gives a number of novel complexes that exhibit unusual ligand binding modes and significantly enhanced anion binding ability. The ruthenium(II) complex [Ru(η6p‐cymene)(κS,S′,N‐ L3 ?H)]+ ( 2 b ) possesses juxtaposed four‐ and seven‐membered chelate rings and binds anions as both 1:1 and 2:1 host guest complexes. The pyridyl bis(thiourea) complex [Ru(η6p‐cymeme)(κS,S′,Npy‐ L4 )]2+ ( 4 ) binds anions in both 1:1 and 1:2 species, whereas the free ligand is ineffective because of intramolecular NH???N hydrogen bonding. Novel palladium(II) complexes with nine‐ and ten‐membered chelate rings are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号