首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, we present a straightforward synthesis of pH‐responsive chitosan‐capped mesoporous silica nanoparticles (MSNs). These MCM‐41‐type MSNs could be used as nanocapsules to accommodate guest molecules. Subsequently, (3‐glycidyloxypropyl)trimethoxysilane was grafted onto the surface of the MSNs, which served as a bridge to link between MSNs and chitosan, which is ubiquitous in nature and commercially available. Owing to the pH‐responsive and biocompatible features of chitosan, the loading and release of an anti‐cancer drug, doxorubicin hydrochloride, were carried out in vitro, in which the composite chitosan‐capped MSNs (CS‐MSNs) showed excellent environmental response. As the pH value of the media decreased, the degree of drug release correspondingly increased. Moreover, thanks to the perfect biocompatibility of chitosan, the CS‐MSNs exhibited lower cytotoxicity than that of the naked MSNs in an MTT assay. In addition, the in vitro kill potency against MCF‐7 breast‐cancer cells was enhanced over time, as well as with increasing concentration of the drug‐loaded CS‐MSNs. These results indicate that CS‐MSNs are promising candidates for pH‐responsive drug delivery in cancer therapy.  相似文献   

2.
A versatile one‐pot strategy for the preparation of reversibly cross‐linked polymer‐coated mesoporous silica nanoparticles (MSNs) via surface reversible addition–fragmentation chain transfer (RAFT) polymerization is presented for the first time in this paper. The less reactive monomer oligo(ethylene glycol) acrylate (OEGA) and the more reactive cross‐linker N,N′‐cystaminebismethacrylamide (CBMA) are chosen to be copolymerized on the external surfaces of RAFT agent‐functionalized MSNs to form the cross‐linked polymer shells. Owing to the reversible cleavage and restoration of disulfide bonds via reduction/oxidation reactions, the polymer shells can control the on/off switching of the nanopores and regulate the drug loading and release. The redox‐responsive release of doxorubicin (DOX) from this drug carrier is realized. The protein adsorption, in vitro cytotoxicity assays, and endocytosis studies demonstrate that this biocompatible vehicle is a potential candidate for delivering drugs. It is expected that this versatile grafting strategy may help fabricate satisfying MSN‐based drug delivery systems for clinical application.

  相似文献   


3.
4.
A controlled drug‐delivery system has been developed based on mesoporous silica nanoparticles that deliver anticancer drugs into cancer cells with minimized side effects. The copolymer of two oligo(ethylene glycol) macromonomers cross‐linked by the disulfide linker N,N′‐bis(acryloyl)cystamine is used to cap hollow mesoporous silica nanoparticles (HMSNs) to form a core/shell structure. The HMSN core is applied as a drug storage unit for its high drug loading capability, whereas the polymer shell is employed as a switch owing to its redox/temperature dual responses. The release behavior in vitro of doxorubicin demonstrated that the loaded drugs could be released rapidly at higher temperature or in the presence of glutathione (GSH). Thus, the dual‐stimulus polymer shell exhibiting a volume phase transition temperature higher than 37 °C can effectively avoid drug leakage in the bloodstream owing to the swollen state of the shell. Once internalized into cells, the carriers shed the polymer shell because of cleavage of the disulfide bonds by GSH, which results in the release of the loaded drugs in cytosol. This work may prove to be a significant development in on‐demand drug release systems for cancer therapy.  相似文献   

5.
New capped silica mesoporous nanoparticles for intracellular controlled cargo release within cathepsin B expressing cells are described. Nanometric mesoporous MCM‐41 supports loaded with safranin O ( S1‐P ) or doxorubicin ( S2‐P ) containing a molecular gate based on a cathepsin B target peptidic sequence were synthesized. Solids were designed to show “zero delivery” and to display cargo release in the presence of cathepsin B enzyme, which selectively hydrolyzed in vitro the capping peptide sequence. Controlled delivery in HeLa, MEFs WT, and MEFs lacking cathepsin B cell lines were also tested. Release of safranin O and doxorubicin in these cells took place when cathepsin B was active or present. Cells treated with S2‐P showed a fall in cell viability due to nanoparticles internalization, cathepsin B hydrolysis of the capping peptide, and cytotoxic agent delivery, proving the possible use of these nanodevices as new therapeutic tools for cancer treatment.  相似文献   

6.
王鑫  谭丽丽  杨英威 《化学学报》2016,74(4):303-311
靶向给药控释体系既可以增强药物在病灶部位的疗效, 又可以降低药物对正常部位的毒副作用. 基于介孔二氧化硅为"容器"-金纳米粒子为"开关"(MSN-AuNPs)的杂化纳米阀门体系同时具备两种纳米粒子的优良特性, 在化学、生物材料以及临床医药等多学科受到广泛关注. 本文根据刺激手段和应用功能分类, 介绍了单一功能和多重功能的MSN-AuNPs杂化纳米阀门体系的重要研究进展, 以及目前面临的挑战和今后的发展方向.  相似文献   

7.
Novel Janus nanoparticles with Au and mesoporous silica faces on opposite sides were prepared using a Pickering emulsion template with paraffin wax as the oil phase. These anisotropic colloids were employed as integrated sensing–actuating nanomachines for enzyme‐controlled stimuli‐responsive cargo delivery. As a proof of concept, we demonstrated the successful use of the Janus colloids for controlled delivery of tris(2,2’‐bipyridyl) ruthenium(II) chloride from the mesoporous silica face, which was grafted with pH‐sensitive gatelike scaffoldings. The release was mediated by the on‐demand catalytic decomposition of urea by urease, which was covalently immobilized on the Au face.  相似文献   

8.
9.
A pH‐controlled delivery system based on mesoporous silica nanoparticles (MSNs) was constructed for dual‐cargo selective release. To achieve a better controlled‐release effect, a modified sol–gel method was employed to obtain MSNs with tunable particle and pore sizes. The systems selectively released different kinds of cargo when stimulated by different pH values. At the lower pH value (pH 2.0) only one kind of cargo was released from the MSNs, whereas at a higher pH value (pH 7.0) only the other kind of cargo was released from the MSNs. The multi‐cargo delivery system has brought the concept of selective release to new advances in the field of functional nanodevices and allows more accurate and controllable delivery of specific cargoes, which is expected to have promising applications in nanomedicine.  相似文献   

10.
A pH‐responsive free‐blockage release system was achieved through controlling the hydrophobic/hydrophilic conversion of mesoporous silica nanopores. This system further presented pulsatile release with changing pH values between 4.0 and 7.0 for several cycles. This free‐blockage release system could also release antitumor agents to induce cell death after infecting tumor cells and could have the ability of continuous infection to tumor cells with high drug‐delivery efficiency and few side effects.  相似文献   

11.
Mesoporous iron‐oxide nanoparticles (mNPs) were prepared by using a modified nanocasting approach with mesoporous carbon as a hard template. mNPs were first loaded with doxorubicin (Dox), an anticancer drug, and then coated with the thermosensitive polymer Pluronic F108 to prevent the leakage of Dox molecules from the pores that would otherwise occur under physiological conditions. The Dox‐loaded, Pluronic F108‐coated system (Dox@F108‐mNPs) was stable at room temperature and physiological pH and released its Dox cargo slowly under acidic conditions or in a sudden burst with magnetic heating. No significant toxicity was observed in vitro when Dox@F108‐mNPs were incubated with noncancerous cells, a result consistent with the minimal internalization of the particles that occurs with normal cells. On the other hand, the drug‐loaded particles significantly reduced the viability of cervical cancer cells (HeLa, IC50=0.70 μm ), wild‐type ovarian cancer cells (A2780, IC50=0.50 μm ) and Dox‐resistant ovarian cancer cells (A2780/AD, IC50=0.53 μm ). In addition, the treatment of HeLa cells with both Dox@F108‐mNPs and subsequent alternating magnetic‐field‐induced hyperthermia was significantly more effective at reducing cell viability than either Dox or Dox@F108‐mNP treatment alone. Thus, Dox@F108‐mNPs constitute a novel soft/hard hybrid nanocarrier system that is highly stable under physiological conditions, temperature‐responsive, and has chemo‐ and thermotherapeutic modes of action.  相似文献   

12.
In this study, an adjustable pH‐responsive drug delivery system using mesoporous silica nanoparticles (MSNs) as the host materials and the modified polypeptides as the nanovalves is reported. Since the polypeptide can self‐assemble via electrostatic interaction at pH 7.4 and be disassembled by pH changes, the modified poly(l ‐lysine) and poly(l ‐glutamate) are utilized for pore blocking and opening in the study. Poly(l ‐lysine)‐MSN (PLL‐MSN) and poly(l ‐glutamate)‐MSN (PLG‐MSN) are synthesized via the ring opening polymerization of N‐carboxyanhydrides onto the surface of mesoporous silica nanoparticles. The successful modification of the polypeptide on MSN is proved by Zeta potential change, X‐ray photoelectron spectroscopy (XPS), solid state NMR, and MALDI‐TOF MS. In vitro simulated dye release studies show that PLL‐MSN and PLG‐MSN can successfully load the dye molecules. The release study shows that the controlled release can be constructed at different pH by adjusting the ratio of PLL‐MSN to PLG‐MSN. Cellular uptake study indicates that the drug is detected in both cytoplasm and nucleus, especially in the nucleus. In vitro cytotoxicity assay indicates that DOX loaded mixture nanoparticles (ratio of PLL‐MSN to PLG‐MSN is 1:1) can be triggered for drug release in HeLa cells, resulting in 88% of cell killing.  相似文献   

13.
Biomedical applications of nontoxic amorphous calcium carbonate (ACC) nanoparticles have mainly been restricted because of their aqueous instability. To improve their stability in physiological environments while retaining their pH‐responsiveness, a novel nanoreactor of ACC–doxorubicin (DOX)@silica was developed for drug delivery for use in cancer therapy. As a result of its rationally engineered structure, this nanoreactor maintains a low drug leakage in physiological and lysosomal/endosomal environments, and responds specifically to pH 6.5 to release the drug. This unique ACC–DOX@silica nanoreactor releases DOX precisely in the weakly acidic microenvironment of cancer cells and results in efficient cell death, thus showing its great potential as a desirable chemotherapeutic nanosystem for cancer therapy.  相似文献   

14.
15.
16.
The synthesis and characterization of two new capped silica mesoporous nanoparticles for controlled delivery purposes are described. Capped hybrid systems consist of MCM‐41 nanoparticles functionalized on the outer surface with polymer ε‐poly‐L ‐lysine by two different anchoring strategies. In both cases, nanoparticles were loaded with model dye molecule [Ru(bipy)3]2+. An anchoring strategy involved the random formation of urea bonds by the treatment of propyl isocyanate‐functionalized MCM‐41 nanoparticles with the lysine amino groups located on the ε‐poly‐L ‐lysine backbone (solid Ru‐rLys‐S1 ). The second strategy involved a specific attachment through the carboxyl terminus of the polypeptide with azidopropyl‐functionalized MCM‐41 nanoparticles (solid Ru‐tLys‐S1 ). Once synthesized, both nanoparticles showed a nearly zero cargo release in water due to the coverage of the nanoparticle surface by polymer ε‐poly‐L ‐lysine. In contrast, a remarkable payload delivery was observed in the presence of proteases due to the hydrolysis of the polymer’s amide bonds. Once chemically characterized, studies of the viability and the lysosomal enzyme‐controlled release of the dye in intracellular media were carried out. Finally, the possibility of using these materials as drug‐delivery systems was tested by preparing the corresponding ε‐poly‐L ‐lysine capped mesoporous silica nanoparticles loaded with cytotoxic drug camptothecin (CPT), CPT‐rLys‐S1 and CPT‐tLys‐S1 . Cellular uptake and cell‐death induction were studied. The efficiency of both nanoparticles as new potential platforms for cancer treatment was demonstrated.  相似文献   

17.
The binding and detachment of carboxyl‐modified gold nanoparticles from liposomes is used for controlled drug delivery. This study reveals that the binding and detachment of nanoparticles from liposomes depends on the degree of hydration of the liposomes. Liposomes with a lower hydration level undergo stronger electrostatic interactions with negatively charged gold nanoparticles, thus leading to a slower detachment of the carboxyl‐modified gold nanoparticles under gastric conditions. Therefore, under gastric conditions, gold‐nanoparticle‐decorated dipalmitoylphosphatidylcholine (DPPC) liposomes exhibit an at least ten‐times‐slower drug release compared to gold‐nanoparticle‐decorated 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphocholine (DMPC) liposomes, although both liposomes in the bare state fail to pursue controlled release. Our study also reveals that one can modulate the drug‐release rate by simply varying the concentration of nanoparticles. This study highlights a novel strategy for the controlled release of drug molecules from liposomes.  相似文献   

18.
多重响应性介孔二氧化硅纳米微球的制备及载药研究   总被引:2,自引:0,他引:2  
采用溶胶凝胶法制备了以油酸稳定的Fe3O4为核, 十六烷基三甲基溴化铵(CTAB)为模板剂的磁响应性的介孔二氧化硅纳米微球; 通过孔道内修饰羧基和巯基, 链转移反应修饰线性的聚(N-异丙基丙烯酰胺-co-N-羟甲基丙烯酰胺)共聚物得到多重响应性的介孔二氧化硅纳米微球P(NIPAM-co-NHMA)@M-MSN(-COOH). 利用Brunauer-Emmett-Teller (BET)、振动样品磁强计(VSM)、透射电子显微镜(TEM)、紫外光谱(UV/Vis)表征了微球的物理化学性质. 阿霉素(DOX)被用作模型药物研究了这种多重响应性的介孔二氧化硅纳米微球作为药物载体的载药及药物释放行为, 结果显示这种纳米微球载药率高达48%, 药物释放呈现对温度和pH的双重响应性, 可以实现对药物的控制释放.  相似文献   

19.
A system of pH-responsive and imaging nanocarriers was developed using mesoporous silica nanoparticles (MSNs), in which gadolinium (Gd) was doped through in situ doping (Gd2O3@MSN). Sodium alginate (SA) was attached to the surfaces of the amino groups of MSNs (NH2-Gd2O3@MSN) through the electrostatic adsorption between the amino groups and the carboxyl groups with the formation of hybrid SA-Gd2O3@MSN nanoparticles (NPs). The SA-coated NPs were spherical or near-spherical in shape with an average size of nearly 83.2 ± 8.7 nm. The in vitro drug release experiments of a model rhodamine B (RhB) cargo were performed at different pH values. The result confirmed the pH-responsiveness of the nanocarriers. The results of the cytotoxicity studies indicated that the SA-Gd2O3@MSN NPs were not cytotoxic by themselves. The results of the in vivo safety evaluation and the hemolysis assay confirmed that the system is highly biocompatible. It is noteworthy that the T1 contrast of the system was significantly enhanced by the Gd, as indicated by the result of the MR imaging. This study confirms that the synthesized hybrid nanosystem is promising for pH-responsive drug delivery and MR imaging for cancer diagnosis and treatment.  相似文献   

20.
合成了荧光介孔二氧化硅纳米粒子(MSNs-FITC),并研究了其在持续药物释放和生物示踪成像方面的应用。首先,采用一步法合成出MSNs-FITC,结合SEM、TEM、FT-IR、XRD和氮气吸附脱附等表征技术进行表征。其次,将抗癌药物阿霉素(DOX)负载到MSNs-FITC中。载药粒子的药物释放行为具有明显的pH依赖性,酸性环境加速释放速率。同时,体外细胞毒性测试表明MSNs-FITC具有良好的生物相容性。激光共聚焦扫描显微镜(CLSM)图像表明,MSNs-FITC可以进入细胞并具有剂量依赖性,流式细胞术分析(FCM)进一步证明了这一结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号