首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The soluble proteins and protein aggregates in Belinda oats were characterized using asymmetric flow field-flow fractionation (AF4) coupled with online UV–vis spectroscopy and multiangle light-scattering detection (MALS). Fractions from the AF4 separation were collected and further characterized by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). The AF4 fractogram of the oat extracts revealed three peaks which were determined to be monomeric forms of soluble proteins, globulin aggregates, and β-glucan, respectively. The early eluting monomeric proteins ranged in molar mass (MM) between 5 and 90 kg/mol and in hydrodynamic diameter (D h) from 1.6 to 13 nm. The MM at peak maximum of the globulin aggregate peak was found to be ~300 kg/mol and the D h was measured to be ~20 nm. SDS-PAGE of the collected fraction across this peak revealed two bands with MM of 37 and 27 kg/mol which correspond to the α and β subunits of globulin indicating the elution of globulin aggregates. A third peak at long retention time was determined to be β-glucan through treatment of the oat extract with β-glucanase and by injection of β-glucan standards. The amount of soluble protein was measured to be 83.1?±?2.3 wt.%, and the amount of albumin proteins was measured to be 17.6?±?5.7 wt.% of the total protein in the oats. The results for Belinda oat extracts show that the AF4-MALS/UV platform is capable of characterizing the physicochemical properties such as MM and hydrodynamic size distribution of proteins and protein aggregates within a complicated food matrix environment and without the need to generate protein isolates.
Figure
MALS (red) and UV (blue) asymmetrical flow field-flow fractionation (AF4) fractograms of Belinda oat extract (BOE) superimposed with SDS-PAGE analysis of collected fractions. The SDS-PAGE of unfractioned BOE is seen in the left most lane and the MM ladder is shown on the right. Separation of monomeric proteins from protein aggregates in the BOE is observed  相似文献   

2.
3.
4.
Flow field-flow fractionation (FlFFF) is used to characterize particles in natural water (ground and surface water) and soil. The opposed flow sample concentration (OFSC) mode of FlFFF (OFSC-FlFFF) is employed, where the colloidal sample is continuously fed into the channel so that the particles are focused into a narrow band near the inlet of the FlFFF channel before the separation is initiated. There is no need for stopping the flow for the sample relaxation, which is usually required in conventional FlFFF operations. First, the OFSC-FlFFF is tested with mixtures of polystyrene latex spheres. Then the OFSC-FlFFF procedure is optimized for the analysis of particles in natural water and soil by varying various experimental parameters including the flow rates. Ground water of up to 100 mL has been successfully loaded, concentrated, and characterized by OFSC-FlFFF. Results show that the OFSC-FlFFF provides a simplified alternative to existing off-line concentration procedures, and it shows high potential for application to analysis of dilute colloidal particles in environmental water. The composition of the samples was analyzed using atomic absorption spectrometry.  相似文献   

5.
The purpose of this study was to assess the stability of the polyfructan levan under different pH solution conditions by monitoring changes in the levan physicochemical properties, such as molar mass (M), root mean square radius (r rms ), hydrodynamic radius (r h ), structure factor (r rms /r h ), and aggregation state with respect to solution pH and hydrolysis time. A commercial levan produced from Z. Mobilis was characterized using asymmetric flow field-flow fractionation (AF4) in combination with online multiangle light scattering (MALS) and differential refractive index (dRI) detection. Under neutral pH solution conditions the levan was found to have a M ranging from 105 to 5?×?107 g/mol, a r rms ranging from ~25 to 100 nm and a r h from ~3 to 151 nm. Two populations were observed in the sample. One population with a M less than 106 g/mol which represented ~60 % of the sample and a second population with an ultrahigh M up to 5?×?107 g/mol, which comprised ~40 % of the sample. The measured r rms /r h structure factor decreased from 1.8 to 0.65 across the AF4 fractogram indicating that early eluting low M levan species had a random coil configuration and late eluting high M species had more homogeneous spherical structures. The measured apparent density values decreased from 80 to 10 kg/m3 across the elution profile and suggest that the observed second population also contains aggregates. The stability of levan in different pH conditions ranging from 1.3 to 8.5 was assessed by tracking changes in the average M and r h , and monitoring the formation of fructose over 1 week. The onset of levan acid hydrolysis was observed to occur sooner at lower pH conditions and no hydrolysis was observed for pH 5.5 and higher.  相似文献   

6.
Hollow-fiber flow field-flow fractionation (HF FlFFF) was applied for the separation and size characterization of airborne particles which were collected in a municipal area and prefractionated into four different-diameter intervals >5.0, 2.5-5.0, 1.5-2.5, <1.5 microm) by continuous split-flow thin (SPLIIT) fractionation. Experiments demonstrated the possibility of utilizing a hollow-fiber module for the high-performance separation of supramicron-sized airborne particles at steric/hyperlayer operating mode of HF FlFFF. Eluting particles during HF FlFFF separation were collected at short time intervals (approximately 10 s) for the microscopic examination. It showed that particle size and size distributions of all SPLITT fractions of airborne particles can be readily obtained using a calibration and that HF FlFFF can be utilized for the size confirmation of the sorted particle fraction during SPLITT fractionation.  相似文献   

7.
郭雨曦  宋天歌  孙瑜珊  喻倩  窦海洋 《色谱》2021,39(11):1247-1254
淀粉颗粒粒径与分子尺寸分别在1~100μm和20~250 nm之间,是影响淀粉功能特性的重要因素之一.非对称场流分离(AF4)是一种基于样品与外力场相互作用机制的分离技术,已应用于表征淀粉分子尺寸分布.商品化的AF4系统的粒径检测范围为1 nm~10μm,对于淀粉颗粒粒径表征具有一定的局限性.该文研制了AF4分离系统;...  相似文献   

8.
通过自组装的非对称场流分离系统(AF4)与紫外可见光检测器联用分离表征了笼养鸡蛋、柴鸡蛋、鹌鹑蛋和鸭蛋蛋黄浆质中的低密度脂蛋白(LDL)。在近似蛋黄浆质生理条件下,研究了进样量、交叉流流速、膜的类型对AF4蛋黄浆质中LDL分离表征的影响;考察了该方法的精密度。在优化的AF4分析条件下,检测出了笼养鸡蛋、柴鸡蛋、鹌鹑蛋和鸭蛋蛋黄浆质中LDL的水力学粒径分布。LDL的AF4洗脱峰高和峰面积的日内精密度分别为1.3%和1.9%(n=7),日间精密度分别为2.4%和2.3%(n=7)。研究结果表明,该方法可用于分离禽类蛋黄浆质中的LDL,同时能够得到LDL水力学粒径分布。  相似文献   

9.
10.
Asymmetrical flow field-flow fractionation (AsFlFFF) was used to determine the size distribution of drug-loaded core/shell nanoparticles which have a lipid core of lecithin and a polymeric shell of a Pluronic. AsFlFFF provided separation of the drug-loaded core/shell nanoparticles from smaller coreless polymeric micelles, thus allowing accurate size analysis of the drug-loaded nanoparticles without interference by the coreless micelles. It was found from AsFlFFF that the drug-loaded nanoparticles have broad size distributions ranging from 100 to 600 nm in diameter. It was also found that, after the nanoparticles had been stored for 70 days, they disappeared as a result of self-degradation. Being a separation technique, AsFlFFF seems to be more useful than transmission electron microscopy or dynamic light scattering for size analysis of core/shell nanoparticles, which have broad and bimodal size distributions. Figure Separation by AsFlFFF  相似文献   

11.
A method for determining the size of silver nanoparticles and their quantification by asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry (ICP-MS) is proposed and was tested in consumer products. Experimental conditions were studied in detail to avoid aggregation processes or alteration of the original size distributions. Additionally, losses from sorption processes onto the channel membrane were minimized for correct quantification of the nanoparticles. Mobile phase composition, injection/focusing, and fractionation conditions were evaluated in terms of their influence on both separation resolution and recovery. The ionic strength, pH, and the presence of ionic and nonionic surfactants had a strong influence on both separation and recovery of the nanoparticles. In general, better results were obtained under those conditions that favored charge repulsions with the membrane. Recovery values of 83 ± 8% and 93 ± 4% with respect to the content of silver nanoparticles were achieved for the consumer products studied. Silver nanoparticle standards were used for size calibration of the channel. The results were compared with those obtained by photon correlation spectroscopy and images taken by transmission electron microscopy. The quantification of silver nanoparticles was performed by direct injection of ionic silver standard solutions into the ICP-MS system, integration of the corresponding peaks, and interpolation of the fractogram area. A limit of detection of 5.6 μg L-1 silver, which corresponds to a number concentration of 1×1012 L-1 for nanoparticles of 10 nm, was achieved for an injection volume of 20 μL.  相似文献   

12.
The methodological approach used to robustly optimize the characterization of the polydisperse colloidal phase of drain water samples is presented. The approach is based on asymmetric flow field-flow fractionation coupled to online ultraviolet/visible spectrophotometry, multi-angle light scattering, and inductively coupled plasma mass spectrometry. Operating factors such as the amount of sample injected and the ratio between main-flow and cross-flow rates were considered. The evaluation of the injection and fractionation steps was performed considering the polydispersity index and the contribution to the polydispersity of the plate height, the recovery, the retention ratio and the size range of the fractionated colloids. This approach allows the polydispersity of natural colloid samples to be taken into consideration to achieve the most efficient and representative fractionation. In addition to the size characterization, elemental analysis was also evaluated using the recovery, precision, and limits of detection and quantification relative to a trace element of interest (copper) in drain water. To complete this investigation, the potential application of the methodology was assessed using several independent drain water samples from different soils. The contribution of the polydispersity to the plate height ranges from 4.8 to 8.9 cm with a mean precision of 6 %. The mean colloidal recovery was 81?±?3 %, and the mean retention ratio was 0.043–0.062. The limits of detection and quantification for copper were 0.6 and 1.8 μg L?1, respectively.  相似文献   

13.
Asymmetrical flow field-flow fractionation (AsFlFFF) was coupled online with multiangle light scattering (MALS) to study the changes in the molecular weight and the size distribution of the corn starch during carboxymethylation. A corn starch was derivatized with sodium chloroacetate in alcoholic medium under alkaline condition to produce carboxymethyl starches (CMS) having various degrees of substitution (DS). The change in thermal characteristics and granule structure of the native corn starch and CMS were compared using Thermogravimetric analysis and scanning electron microscope. The ionic strength of the carrier liquid (water with 0.02% NaN3) was optimized by adding 50 mM NaNO3 to minimize the interactions among the starch molecules and between the starch molecules and the AsFlFFF membrane. A field-programmed AsFlFFF allowed determination of the molecular weight distribution (MWD) of starches within about 25 min. It was found that carboxymethylation of starch results in reduction in the molecular weight due to molecular degradation by the alkaline treatment. The weight-average molecular weight (Mw) was reduced down to about 4.4 × 105 from about 7.2 × 106 when DS was 0.14. It seems AsFlFFF coupled with MALS (AsFlFFF/MALS) is a useful tool for monitoring the changes taking place in the molecular weight and the size of starch during derivatization.  相似文献   

14.
张靖  郭攀攀  李惠丽  申世刚  窦海洋 《色谱》2020,38(2):169-176
基于非对称场流分离技术耦合多角度激光光散射检测器和示差折光检测器,建立了分离表征小米淀粉的方法。研究了进样量、交叉流流速、半衰期(t1/2)、载液离子强度和pH值对小米淀粉分离效果的影响;考察了该方法的重现性;探究了小米淀粉分子结构。结果表明,在进样体积为50 μL、进样质量浓度为0.50 g/L、交叉流流速为1.2 mL/min、t1/2=3 min、载液为10 mmol/L pH 7.00 NaNO3(含3 mmol/L NaN3)的条件下,小米淀粉分离效果最佳。该方法具有良好的重现性,得到的小米淀粉的回转半径相对标准偏差为3.4%、摩尔质量相对标准偏差为7.0%。  相似文献   

15.
The separation of wide molecular mass (Mr) ranges of macromolecules using frit inlet asymmetrical flow field-flow fractionation (FI-AFlFFF) has been improved by implementing a combination of field and flow programming. In this first implementation, field strength (governed by the cross flow-rate through the membrane-covered accumulation wall) is decreased with time to obtain faster elution and improved detection of the more strongly retained (high Mr) materials. The channel outlet flow-rate is optionally held constant, increased, or decreased with time. With circulation of the flow exiting the accumulation wall to the inlet frit, the dual programming of cross flow and channel outlet flow could be implemented using just two pumps. With this flow configuration, the channel outlet flow-rate is always equal to the channel inlet flow-rate, and these may be programmed independently of the cross flow-rate through the membrane. FI-AFlFFF retains its operational advantage over conventional asymmetrical flow FFF (AFlFFF). Unlike conventional AFlFFF, FI-AFlFFF does not require time consuming, and experimentally inconvenient, sample focusing and relaxation steps involving valve switching and interruption of sample migration. The advantages of employing dual programming with FI-AFlFFF are demonstrated for sets of polystyrene sulfonate standards in the molecular mass range of 4 to 1000 kDa. It is shown that programmed FI-AFlFFF successfully expands the dynamic separation range of molecular mass.  相似文献   

16.
Field-flow fractionation (FFF) is one of the most versatile separation techniques in the field of analytical separation sciences, capable of separating macromolecules in the range 103–1015 g mol−1 and/or particles with 1 nm–100 μm in diameter. The most universal and most frequently used FFF technique, flow FFF, includes three types of techniques, namely symmetrical flow FFF, hollow fiber flow FFF, and asymmetrical flow FFF which is most established variant among them. This review provides a brief look at the theoretical background of analyte retention and separation efficiency in FFF, followed by a comprehensive overview of the current status of asymmetrical flow FFF with selected applications in the field of biopolymers and bioparticles.  相似文献   

17.
Different functions for the programming of the cross flow in asymmetrical flow field-flow fractionation were studied with the aim to find the flow conditions most suitable for the molar mass distribution analysis of high molecular weight polysaccharides. A mixture of four differently sized pullulans covering the molar mass range 5.8 x 10(3)-1.6 x 10(6) g mol(-1) were used as a model sample. Two types of programs were studied, linear and exponential decays, both with and without initial periods of a constant cross flow. For comparison, nonprogrammed runs, i.e. using constant cross flow, were studied. It was found that exponentially decaying cross flow gave the most uniform molar mass selectivity across the fractogram. The programmed cross flow was applied to the molar mass distribution analysis of a technical quality of hydroxypropyl cellulose.  相似文献   

18.
Asymmetrical flow field-flow fractionation (asymmetrical flow FFF), connected on-line to multi-angle light scattering detection (MALS) was shown here to be an efficient method for size characterization of pullulan standards and dextrans ranging from 20 000 up to 2 000 000 in molecular mass. The characterization of molecular mass and the molecular mass distribution of these polysaccharides is often complex and may require different methods. Using asymmetrical flow FFF-MALS, information was obtained not only about molecular mass and molecular mass distribution but also about hydrodynamic size as well as radius of gyration and conformation. The analysis time was very short, often below 5 min. It was shown that the pullulan standards have a narrow molecular mass distribution compared to the more polydisperse dextrans. Obtained molecular masses and distributions were in good agreement with data from the manufacturer. The dextrans, especially at high molecular mass, were found to have a more compact structure than the pullulans in both water and 0.1 M NaCl.  相似文献   

19.
Interest in low-cost, analytical-scale, highly efficient and sensitive separation methods for cells, among which bacteria, is increasing. Particle separation in hollow-fiber flow field-flow fractionation (HF FlFFF) has been recently improved by the optimization of the HF FIFFF channel design. The intrinsic simplicity and low cost of this HF FlFFF channel allows for its disposable usage. which is particularly appealing for analytical bio-applications. Here, for the first time, we present a feasibility study on high-performance, hyperlayer HF FIFFF of micrometer-sized bacteria (Escherichia coli) and of different types of cells (human red blood cells, wine-making yeast from Saccharomyces cerevisiae). Fractionation performance is shown to be at least comparable to that obtained with conventional, flat-channel hyperlayer FIFFF of cells, at superior size-based selectivity and reduced analysis time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号