首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supramolecular polymeric assemblies represent an emerging, promising class of molecular assemblies with enormous versatility compared with their covalent polymeric counterparts. Although a large number of host–guest motifs have been produced over the history of supramolecular chemistry, only a limited number of recognition motifs have been utilized as supramolecular connections in polymeric assemblies. This account describes the molecular recognition of host molecules based on calix[5]arene and bisporphyrin that demonstrate unique guest encapsulations; subsequently, these host–guest motifs are applied to the synthesis of supramolecular polymers that display polymer‐like properties in solution and solid states. In addition, new bisresorcinarenes are developed to form supramolecular polymers that are connected via a rim‐to‐rim hydrogen‐bonded dimeric structure, which is composed of two resorcinarene moieties.

  相似文献   


2.
Insider dealing : Self‐assembled hosts applied as “molecular flasks” can alter and control the reactivity and properties of molecules encapsulated within their well‐defined, confined spaces. A variety of functional hosts of differing sizes, shapes, and utility have been prepared by using the facile and modular concepts of self‐assembly.

  相似文献   


3.
4.
5.
Five dioxynaphthalene[38]‐crown‐10 ( DNP38C10 ) macrocycles bearing one, two, three, or four allyl moieties have been synthesized and their ability to spontaneously self‐assemble with methyl viologen to form [2]pseudorotaxanes has been evaluated. Association constants between methyl viologen and several of the allyl‐functionalized DNP38C10 macrocycles are found to be comparable to that of methyl viologen and unfunctionalized DNP38C10 , however, the enthalpic and entropic factors that underlie overall binding free energy vary systematically with increasing allyl substitution. These variations are explained through a combination of solution phase and solid‐state analysis of the macrocycles and their complexes. The utility of endowing DNP38C10 macrocycles with allyl moieties is further demonstrated by the ease with which they can be functionalized through thiol‐ene click chemistry.  相似文献   

6.
A M2L2 rectangular‐shaped metallacycle, obtained by metal‐directed self‐assembly of a 2‐(pyridin‐4‐ylmethyl)‐2,7‐diazapyrenium salt and [(en)Pd (NO3)2] (en=ethylenediamine), has been investigated as a molecular receptor for a wide range of aromatic substrates in water. Complexation and catenation of the receptor with selected mono‐ and polycyclic aromatic substrates produced 1:1 inclusion complexes and [2]catenanes in a highly efficient fashion, as determined by NMR and UV/Vis spectroscopic techniques, as well as single‐crystal X‐ray crystallography. Furthermore, the thermodynamic and kinetic features of the complexation processes have been analyzed for selected model guests.  相似文献   

7.
We have designed anion receptor 4 based on a conformationally labile bispyrrolylbenzene framework, the conformation of which can be changed by appropriate anionic stimuli. In the absence of fluoride anion, the pyrrole moieties rotate freely at room temperature. However, when the concentration of fluoride anion exceeds 2 equivalents, the rotation of the pyrrole units slows down and the conformation of the receptor changes to antianti. DFT calculations have shown that this change is due to binding of a third fluoride anion through C?H interaction. Anion receptor 4 can also serve as a molecular logic gate. Anionic inputs such as fluoride and dihydrogenphosphate allow the realization of INHIBIT and NAND logic gate functions with absorption and fluorescence as readouts, respectively.  相似文献   

8.
Subtle differences in metal–ligand bond lengths between a series of [M4L6]4? tetrahedral cages, where M=FeII, CoII, or NiII, were observed to result in substantial differences in affinity for hydrophobic guests in water. Changing the metal ion from iron(II) to cobalt(II) or nickel(II) increases the size of the interior cavity of the cage and allows encapsulation of larger guest molecules. NMR spectroscopy was used to study the recognition properties of the iron(II) and cobalt(II) cages towards small hydrophobic guests in water, and single‐crystal X‐ray diffraction was used to study the solid‐state complexes of the iron(II) and nickel(II) cages.  相似文献   

9.
10.
11.
Nonspherical cages in inclusion compounds can result in non‐uniform motion of guest species in these cages and anisotropic lineshapes in NMR spectra of the guest. Herein, we develop a methodology to calculate lineshape anisotropy of guest species in cages based on molecular dynamics simulations of the inclusion compound. The methodology is valid for guest atoms with spin 1/2 nuclei and does not depend on the temperature and type of inclusion compound or guest species studied. As an example, the nonspherical shape of the structure I (sI) clathrate hydrate large cages leads to preferential alignment of linear CO2 molecules in directions parallel to the two hexagonal faces of the cages. The angular distribution of the CO2 guests in terms of a polar angle θ and azimuth angle ? and small amplitude vibrational motions in the large cage are characterized by molecular dynamics simulations at different temperatures in the stability range of the CO2 sI clathrate. The experimental 13C NMR lineshapes of CO2 guests in the large cages show a reversal of the skew between the low temperature (77 K) and the high temperature (238 K) limits of the stability of the clathrate. We determine the angular distributions of the guests in the cages by classical MD simulations of the sI clathrate and calculate the 13C NMR lineshapes over a range of temperatures. Good agreement between experimental lineshapes and calculated lineshapes is obtained. No assumptions regarding the nature of the guest motions in the cages are required.  相似文献   

12.
13.
14.
A family of PdII/PtII dinuclear receptors, designed to give a smooth increase in their cavity lengths (from 7.46–13.78 Å), is presented. Their inclusion complexes with a representative set of polycyclic aromatic substrates (naphthalene, carbazol, pyrene, and benzo[a]pyrene), were characterized and studied in aqueous solution and the solid state. By taking into account the dimensions of both receptors and substrates, an excellent complementarity was found between the size of the receptors and their ability to complex a given substrate. Furthermore, this dimensional matching results in specific binding modes depending on the ability of the guest to establish stabilizing [C? H???π] interactions with the host.  相似文献   

15.
Sterically‐engineered rigid trigonal molecular modules based on 1,3,5‐tri(4‐hydroxyphenyl)benzenes H1 and H2 undergo O‐H???O hydrogen‐bonded self‐assembly into eight‐fold catenated hexagonal (6,3) and two‐fold interpenetrated undulated square (4,4) networks, respectively. In the presence of [18]crown‐6 as a guest, the triphenol H1 is found to self‐assemble into a honeycomb network with hexagonal voids created between three triphenol building blocks. The guest [18]crown‐6 molecules are found to be nicely nested in hexagonal enclosures. The empty spaces within the crowns can be further filled with neutral (MeOH/water, MeOH/MeNO2) or ionic guest species such as KI/KAcAc to furnish novel multicomponent assemblies, that is, guest ? guest ? host, that typify Russian dolls. In contrast, triphenol H2 is found to yield analogous multicomponent molecular crystals in which the guest crown–K+ acts as a spacers in the hydrogen‐bonded self‐assembly that leads to distorted chicken wire networks.  相似文献   

16.
Solvothermal reactions of the calix[4]arene tetraacetic acid (H4CTA) with zinc nitrate in the presence of α,ω‐diaminoalkanes afford two‐dimensional metallopolycapsular networks of the formula {[Me2NH2]2[G@(Zn2(CTA)2)] ? (DMF)2 ? (H2O)4}n (G=+NH3–(CH2)n–NH3+, n=2, 3, 4; DMF=N,N‐dimethylformamide). These metallopolycapsular networks are built up of metallocapsules that consist of two CTA and two ZnII ions. Short alkanediyldiammonium (+NH3–(CH2)n–NH3+, n=2, 3, 4) guest ions are accommodated in each capsule of the metallopolycapsular network through a variety of supramolecular interactions. The thermal behaviours and the solid‐state photoluminescent properties of these complexes were also investigated.  相似文献   

17.
Stable nanoparticle vesicles were for the first time prepared from adamantyl‐ and cyclodextrin (CD)‐modified silica nanoparticles forming host–guest interactions in aqueous solution. Adamantyl‐functionalized nanoparticles were obtained from thiol‐isocyanate reaction of thiol‐modified nanoparticles with 1‐adamantyl isocyanate. The CD modified silica particles were isolated from a reaction of mono‐6‐para‐toluenesulfonyl‐β‐cyclodextrin with the thiol functionalized silica under microwave conditions in basic media. The obtained particles were characterized in respect of agglomeration and self‐assembly behavior in aqueous solution by dynamic light scattering and transmission electron microscopy. The found vesicle structures are exceptionally stable even after evaporation of water. Such inorganic hollow spheres formed through self‐assembly processes may be important for chemical storage and transport. The technique of chemically‐driven assembly is an attractive option to form useful complex structures by tunable agglomeration.

  相似文献   


18.
A highly luminescent Zn4L6 tetrahedron is reported with 3.8 nm perylene bisimide edges and hexadentate ZnII–imine chelate vertices. Replacing FeII and monoamines commonly utilized in subcomponent self‐assembly with ZnII and tris(2‐aminoethyl)amine provides access to a metallosupramolecular host with the rare combination of structural integrity at concentrations <10?7 mol L?1 and an exceptionally high fluorescence quantum yield of Φem=0.67. Encapsulation of multiple perylene or coronene guest molecules is accompanied by strong luminescence quenching. We anticipate this self‐assembly strategy may be generalized to improve access to brightly fluorescent coordination cages tailored for host–guest light‐harvesting, photocatalysis, and sensing.  相似文献   

19.
The self‐inclusion behavior of monoester copillar[5]arenes depends on the position of the ester group, which causes different guest selectivities. Monoester copillar[5]arenes bearing an acetate chain can form stable self‐inclusion complexes in low‐ and high‐concentration solution and exhibit high guest selectivity. However, a monoester copillar[5]arene bearing a butyrate chain can not form a self‐inclusion complex and exhibits low guest selectivity. Thus, a new class of stable self‐inclusion complexes of copillar[5]arenes was explored to improve the selectivity of molecular recognition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号