首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Will microreactors replace the round‐bottomed flask to perform chemical reactions in the near future? Recent developments in the construction of microstructured reaction devices and their wide‐ranging applications in many different areas of chemistry suggest that they can have a significant impact on the way chemists conduct their experiments. Miniaturizing reactions offers many advantages for the synthetic organic chemist: high‐throughput scanning of reaction conditions, precise control of reaction variables, the use of small quantities of reagents, increased safety parameters, and ready scale‐up of synthetic procedures. A wide range of single‐ and multiphase reactions have now been performed in microfluidic‐based devices. Certainly, microreactors cannot be applied to all chemistries yet and microfluidic systems also have disadvantages. Limited reaction‐time range, high sensitivity to precipitating products, and new physical, chemical, and analytical challenges have to be overcome. This concept article presents an overview of microfluidic devices available for chemical synthesis and evaluates the potential of microreactor technology in organic synthesis.  相似文献   

2.
Reactions that involve the addition of carbon‐centered radicals to basic heteroarenes, followed by formal hydrogen atom loss, have become widely known as Minisci‐type reactions. First developed into a useful synthetic tool in the late 1960s by Minisci, this reaction type has been in constant use over the last half century by chemists seeking to functionalize heterocycles in a rapid and direct manner, avoiding the need for de novo heterocycle synthesis. Whilst the originally developed protocols for radical generation remain in active use today, they have been joined in recent years by a new array of radical generation strategies that allow use of a wider variety of radical precursors that often operate under milder and more benign conditions. The recent surge of interest in new transformations based on free radical reactivity has meant that numerous choices are now available to a synthetic chemist looking to utilize a Minisci‐type reaction. Radical‐generation methods based on photoredox catalysis and electrochemistry have joined approaches which utilize thermal cleavage or the in situ generation of reactive radical precursors. This review will cover the remarkably large body of literature that has appeared on this topic over the last decade in an attempt to provide guidance to the synthetic chemist, as well as a perspective on both the challenges that have been overcome and those that still remain. As well as the logical classification of advances based on the nature of the radical precursor, with which most advances have been concerned, recent advances in control of various selectivity aspects associated with Minisci‐type reactions will also be discussed.  相似文献   

3.
The use of transition-metal complexes as reagents for the synthesis of complex organic compounds has been under development for at least several decades, and many extraordinary organic transformations of profound potential have been realized. However, adoption of this chemistry by the practicing synthetic organic chemist has been inordinately slow, and only now are transition-metal reagents beginning to achieve their rightful place in the arsenal of organic synthesis. Several factors contributed to the initial reluctance of synthetic organic chemists to use organometallic reagents. Lacking education and experience in the ways of elements having d electrons, synthetic chemists viewed organometallic processes as something mysterious and unpredictable, and not to be discussed in polite society. Organometallic chemists did not help matters by advertising their latest advances as useful synthetic methodology, but restricting their studies to very simple organic systems lacking any serious functionality (e.g., the “methyl, ethyl, butyl, futile” syndrome). Happily, things have changed. Organometallic chemists have turned their attention to more complex systems, and more recently trained organic chemists have benefited from exposure to the application of transition metals. This combination has set the stage for major advances in the use of transition metals in the synthesis of complex organic compounds. This review deals with one aspect of this area, the use of transition metals in the synthesis of indoles.  相似文献   

4.
Named reactions are key points in the development of chemistry. Any competent chemist easily identifies the reaction named after Wittig, or Grignard, Diels–Alder, or Friedel–Crafts, Michael, or Favorsky. But how much do we can say about scientist who discovered it? This Essay is devoted to the transition‐metal‐catalyzed hydration of acetylenic hydrocarbons discovered by Russian chemist Mikhail Kucherov. This reaction is one of the most straightforward methods for the synthesis of carbonyl compounds. With it, in industry for a long time acetaldehyde was essentially manufactured from accessible unsaturated raw material—acetylene. This reaction is one of the first steps in the establishment of homogenous metal complex catalysis in organic synthesis. Herein, we described the history of this discovery and the role of many scientists in the development of research in this field. We would also like to show the life of Russian scientists in the latter half of the 19th century.  相似文献   

5.
The use of open-access mass spectrometry to monitor synthetic chemistry reactions, and also the integrity and purity of new chemical entities, has been a part of the medicinal chemist's tool-box for more than 5 years. Originally in our group at Wyeth Research there were two open-access methods available to the chemists, flow injection analysis (FIA) and liquid chromatography/mass spectrometry (LC/MS). The FIA method was approximately 3 min long, while the LC/MS method was approximately 20 min long (including an 8 min gradient). Within the first 2 years, the total number of open-access analyses increased by approximately 125%. It is interesting, however, that the number of LC/MS analyses increased by more than 285%. This is attributed to the fact that the chemists began using the LC/MS data to monitor reactions and also to check final product integrity and purity. In addition, the number of chemists performing parallel synthesis reactions has increased; thus, individual chemists can produce sample sets of up to 100 vials. This paper describes the implementation of new methodology, which accommodates the need for much faster run times and also the ability to acquire alternating positive and negative ion spectra within the same run. In addition, the instrument has been configured to e-mail the resulting processed data report to the submitting chemist. Several methods have been developed, including structure elucidation using in-source collision-induced dissociation (CID) and night-time analysis. The LC/MS methods for this system are described herein and are applicable to both industrial and academic synthetic chemistry optimization efforts.  相似文献   

6.
Enzyme‐mediated cascade reactions are widespread in biosynthesis. To facilitate comparison with the mechanistic categorizations of cascade reactions by synthetic chemists and delineate the common underlying chemistry, we discuss four types of enzymatic cascade reactions: those involving nucleophilic, electrophilic, pericyclic, and radical reactions. Two subtypes of enzymes that generate radical cascades exist at opposite ends of the oxygen abundance spectrum. Iron‐based enzymes use O2 to generate high valent iron‐oxo species to homolyze unactivated C?H bonds in substrates to initiate skeletal rearrangements. At anaerobic end, enzymes reversibly cleave S‐adenosylmethionine (SAM) to generate the 5′‐deoxyadenosyl radical as a powerful oxidant to initiate C?H bond homolysis in bound substrates. The latter enzymes are termed radical SAM enzymes. We categorize the former as “thwarted oxygenases”.  相似文献   

7.
Vitamin B12 is an essential vitamin for human health, and lack of it leads to pernicious anemia. This biological activity has attracted intense interest for some time; in addition, the complex architecture of the B12 molecule has fascinated chemists and biochemists since its discovery as the first natural organocobalt complex and the establishment of its structure by X-ray analysis. The organic ligand surrounding the cobalt displays many stereogenic centers along its periphery carrying reactive functional groups. This complexity led vitamin B12 to be rightly regarded as an extreme challenge to the synthetic chemist. Yet microorganisms achieve this synthesis in vivo with complete control of regio- and stereochemistry. How do they do it? This review tells the full remarkable story. Success in unraveling this biosynthetic puzzle resulted from a collaborative effort by biologists and chemists using the full range of methods available from their disciplines–from genetics at one end of the spectrum to synthesis and NMR spectroscopy at the other. This work can act as a guide for future research on the biosynthesis of yet more complex natural substances.  相似文献   

8.
The emergence of drug resistant bacterial infections leading to high mortality rates has posed a formidable challenge to organic synthesis and medicinal chemists to deliver potent and novel antibacterial drug candidates. In particular, antibacterial agents based on novel chemotypes and first-in-class drug candidates with novel mode of actions are highly desired. Indole scaffold has found a consistent presence in the bioactive molecules of synthetic and natural origin. The potential of indole based small molecules as antibacterial agents has not been as much explored as in other areas of medicine, like cancer therapy. In this review, we present a brief account of indole based antibacterial small molecules which have been either synthesized in the laboratory or isolated from natural sources and provide intriguing potential leads in the antibiotic drug discovery research.  相似文献   

9.
The imidazo[1,2‐a]pyridines are an important target in organic synthetic chemistry and have attracted critical attention of chemists mainly due to the discovery of the interesting properties exhibited by a great number of imidazo[1,2‐a]pyridine derivatives. Although lots of synthetic methods of imidazo[1,2‐a]pyridines have been developed in the past years, the chemistry community faces continuing challenges to use green reagents, maximize atom economy and enrich the functional group diversity of product. Undoubtedly, with its low cost and lack of environmentally hazardous byproducts, cascade reactions and C?H functionalizations are ideal strategies for this field. In this record we highlight some of our progress toward the goal to synthesis of imidazo[1,2‐a]pyridine derivatives through carbene transformations or C?H functionalizations.  相似文献   

10.
Spatial and temporal control over chemical and biological processes, both in terms of “tuning” products and providing site‐specific control, is one of the most exciting and rapidly developing areas of modern science. For synthetic chemists, the challenge is to discover and develop selective and efficient reactions capable of generating useful molecules in a variety of matrices. In recent studies, light has been recognized as a valuable method for determining where, when, and to what extent a process is started or stopped. Accordingly, this Minireview will present the fundamental aspects of light‐induced click reactions, highlight the applications of these reactions to diverse fields of study, and discuss the potential for this methodology to be applied to the study of biomolecular systems.  相似文献   

11.
A focused collection of organic synthesis reactions for computer-based molecule construction is presented. It is inspired by real-world chemistry and has been compiled in close collaboration with medicinal chemists to achieve high practical relevance. Virtual molecules assembled from existing starting material connected by these reactions are supposed to have an enhanced chance to be amenable to real chemical synthesis. About 50% of the reactions in the dataset are ring-forming reactions, which fosters the assembly of novel ring systems and innovative chemotypes. A comparison with a recent survey of the reactions used in early drug discovery revealed considerable overlaps with the collection presented here. The dataset is available encoded as computer-readable Reaction SMARTS expressions from the Supporting Information presented for this paper.  相似文献   

12.
Asymmetric catalysis is a challenge for chemists: How can we design catalysts to achieve the goal of forming optically active compounds? This review provides the reader with an overview of the development of catalytic asymmetric hetero-Diels-Alder reactions of carbonyl compounds and imines. Since its discovery, the Diels-Alder reaction has undergone intensive development and is of fundamental importance for synthetic, physical, and theoretical chemists. The Diels-Alder reaction has been through different stages of development, and at the beginning of the 21st century catalytic Diels-Alder reactions are one of the main areas of focus. The preparation of numerous compounds of importance for our society is based on cycloaddition reactions to carbonyl compounds and imines. There are several parallels between the reactions of carbonyl compounds and those of imines, which, however, begin to vanish on entering the field of catalytic reactions. Why? From a mechanistic point of view some similarities can be drawn, but the synthetic development of catalytic enantioselective hetero-Diels-Alder reactions of imines are several years behind those of the carbonyl compounds. For hetero-Diels-Alder reactions of carbonyl compounds there a number of different chiral catalysts, and great progress has been achieved in developing enantioselective reactions for unactivated and activated carbonyl compounds. In contrast the development of catalytic enantioselective hetero-Diels-Alder reactions of imines is in its infancy and only few catalytic reactions have been published. This review will focus on the most important developments, and discuss the synthetic and mechanistic aspects of enantioselective hetero-Diels-Alder reactions of carbonyl compounds catalyzed by chiral Lewis acids. For the hetero-Diels-Alder reactions of imines, the diastereoselective reactions of optically substrates catalyzed by Lewis acids will be presented first, followed by the catalytic enantioselective reactions.  相似文献   

13.
The development of ecofriendly methods for carbon–carbon (C?C) and carbon–heteroatom (C?Het) bond formation is of great significance in modern‐day research. Metal‐free cross‐dehydrogenative coupling (CDC) has emerged as an important tool for organic and medicinal chemists as a means to form C?C and C?Het bonds, as it is atom economical and more efficient and greener than transition‐metal catalyzed CDC reactions. Molecular iodine (I2) is recognized as an inexpensive, environmentally benign, and easy‐to‐handle catalyst or reagent to pursue CDCs under mild reaction conditions, with good regioselectivities and broad substrate compatibility. This review presents the recent developments of I2‐catalyzed C?C, C?N, C?O, and C?S/C?Se bond‐forming reactions for the synthesis of various important organic molecules by cross‐dehydrogenative coupling.  相似文献   

14.
Palladium‐catalyzed cross‐coupling reactions enable organic chemists to form C? C bonds in targeted positions and under mild conditions. Although phosphine ligands have been intensively researched, in the search for even better cross‐coupling catalysts attention has recently turned to the use of N‐heterocyclic carbene (NHC) ligands, which form a strong bond to the palladium center. PEPPSI (pyridine‐enhanced precatalyst preparation, stabilization, and initiation) palladium precatalysts with bulky NHC ligands have established themselves as successful alternatives to palladium phosphine complexes. This Review shows the success of these species in Suzuki–Miyaura, Negishi, and Stille–Migita cross‐couplings as well as in amination and sulfination reactions.  相似文献   

15.
Organic-chemical synthesis has always fascinated chemists and will not lose its importance in the future. It is a truism that all chemists—and others too—are dependent on the synthesis of those compounds with which they want to work. As a result, organic-chemical synthesis today is more than ever before the cutting edge of organic chemistry, biology, biochemistry, medicine, physics, and material science. Synthesis is also the basis of the chemical industry. For the passionate synthetic chemist, however, synthesis is much more than just a method for obtaining compounds; it is the expression of his creativity, intelligence, ability, and also his perseverance.  相似文献   

16.
周维善  许杏祥 《化学学报》2000,58(2):135-143
青蒿素和鹰爪素A是从中药中分离的两个含过氧基团的抗疟活性组分。特别是青蒿素已成为新型的抗疟药物,因而引起合成化学家的极大兴趣。现对该两个化合物的全合成作一综述。  相似文献   

17.
“Chemistry has become a mature science, with all the advantages and handicaps of maturity: harvest is abundant, but many people think future and adventure are to be found elsewhere”[1a]. This holds true—in 1981, the year of Hermann Staudinger's 100th birthday—for macromolecular chemistry, too. Where can the polymer chemists seek adventures? Unsolved problems in neighboring fields like medicine and molecular biology attract his zeal. Cancer chemotherapy is such a field. Can the polymer chemist help to solve its problems? Polymers may be pharmacologically active as such. If used as carriers, they may, due to their intrinsic properties, influence body distribution, excretion or cell uptake of the pharmaca they carry. Hence, there is a chance for new ways in therapy, including affinity chemotherapy using synthetic macromolecules. Our own body has a perfect biological system for affinity therapy: immune response to infection selectively attacks foreign cells, It is fascinating to observe what the immune system does to a tumor cell which could not escape immune surveillance (cf. Fig. 14). Can these specific cell-cell interactions be mimicked? What do we have to learn for an experimental approach to this adventure? Stable membrane and cell models can be synthesized, a first step towards this goal. Macromolecular chemistry is far from being able to offer satisfying solutions for a specific tumor therapy; striving for it, polymer chemists can learn lots of things. In order to do so, they will have to enter neighboring fields and they will have to be willing and able to cooperate.  相似文献   

18.
In this account, a rapid retrosynthesis-based scoring method for the assessment of synthetic accessibility of drug-like molecules, called RASA (Retrosynthesis-based Assessment of Synthetic Accessibility) is devised. RASA first constructs a synthesis tree for the target molecule based on retrosynthetic analysis; in this process a series of strategies are suggested for limiting combinatorial explosion of the synthesis tree. A scoring function (RASA-score) for the assessment of synthetic accessibility is then proposed based on the optional effective synthetic routes, the complexity of reaction, and the difficulty of separation/purification associated with the most favorable synthetic route. The contributions of individual components are calibrated by linear regression analysis based on the synthetic accessibility estimates of a training set (100 compounds) given by a group of medicinal chemists (G1). Two external test sets (TS1 and TS2), whose synthetic accessibility estimates were given by the group G1 medicinal chemists and another group (G2) of medicinal chemists (from literature), respectively, were adopted for the evaluation of RASA. The correlation coefficient between the calculated RASA-score values and the estimated scores by medicinal chemists for TS1 is 0.807 and that for TS2 is 0.792, which demonstrate the validity and reliability of RASA. The validity and reliability as well as the high speed of RASA and its capability of suggesting synthetic routes enable it a useful tool in drug discovery.  相似文献   

19.
Homogeneous catalysis has provided chemists with numerous transformations to enable rapid construction of organic molecules. However, these reactions are complex, requiring multiple substrate‐dependent mechanistic steps to operate in harmony under a single set of experimental conditions. As a consequence, synthetic chemists often carry out laborious, empirical screening to identify suitable catalysts, solvents, and additives to achieve high yields and selectivity. In this Minireview, recently developed tools, technologies, and strategies will be described that improve this development process. In particular, the application of high throughput techniques to run more experiments, experimental design principles to access better data, and statistical tools to provide predictive models will be discussed.  相似文献   

20.
Innovation has frequently been described as the key to drug discovery. However, in the daily routine, medicinal chemists often tend to stick to the functional groups and structural elements they know and love. Blockbuster cancer drug Velcade (bortezomib), for example, was rejected by more than 50 companies, supposedly because of its unusual boronic acid function (as often repeated: “only a moron would put boron in a drug!”). Similarly, in the discovery process of the pan‐CDK inhibitor BAY 1000394, the unconventional proposal to introduce a sulfoximine group into the lead series also led to sneers and raised eyebrows, since sulfoximines have seldom been used in medicinal chemistry. However, it was the introduction of the sulfoximine group that finally allowed the fundamental issues of the project to be overcome, culminating in the identification of the clinical sulfoximine pan‐CDK inhibitor BAY 1000394. This Minireview provides an overview of a widely neglected opportunity in medicinal chemistry—the sulfoximine group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号