首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hierarchical LiV3O8 nanofibers, assembled from nanosheets that have exposed {100} facets, have been fabricated by using electrospinning combined with calcination. The formation mechanism of hierarchical nanofibers was investigated by X‐ray diffraction and scanning electron microscopy. Poly(vinyl alcohol) (PVA) played a dual role in the formation of the nanofibers: besides acting as the template for forming the fibers, it effectively prevented the aggregation of LiV3O8 nanoparticles, thereby allowing them to grow into small nanosheets with exposed {100} facets owing to the self‐limitation property of LiV3O8. This nanostructure is beneficial for the insertion/extraction of lithium ions. Meanwhile, the {100} facets have fewer and smaller channels, which may effectively alleviate proton co‐intercalation into the electrode materials. Hence, the hierarchical LiV3O8 nanofibers exhibit higher discharge capacities and better cycling stabilities as the anode electrode material for aqueous lithium‐ion batteries than those reported previously. We demonstrate that these hierarchical nanofibers have promising potential applications in aqueous lithium‐ion batteries.  相似文献   

3.
Graphene–CdS (GR–CdS) nanocomposites were prepared in a one‐step synthesis in aqueous solution. The synthetic approach was simple and fast, and it may be extended for the synthesis of other GR–metal‐sulfide nanocomposites. The as‐prepared GR–CdS nanocomposite films inherited the excellent electron‐transport properties of GR. In addition, the heteronanostructure of the GR–CdS nanocomposites facilitated the spatial separation of the charge carriers, thus resulting in enhanced photocurrent intensity, which makes it a promising candidate for photoelectrochemical applications. This strategy was used for the fabrication of an advanced photoelectrochemical cytosensor, based on these GR–CdS nanocomposites, by using a layer‐by‐layer assembly process. This photoelectrochemical cytosensor showed a good photoelectronic effect and cell‐capture ability, and had a wide linear range and low detection limit for Hela cells. The as‐synthesized GR–CdS nanocomposites exhibited obviously enhanced photovoltaic properties, which could be an efficient platform for many other high‐performance photovoltaic devices.  相似文献   

4.
Homogeneous TiO2 single crystals with high exposure of {100} reactive facets were constructed as a seed monolayer on transparent conductive substrates with the desired orientation of reactive facets. A secondary growth process was subsequently carried out on the monolayer seed film to form an axis‐oriented continuous reactive film. Performing secondary growth with different precursors led to optimized conditions for high‐performance photoelectrochemical activity of anatase TiO2 films. Experimental techniques such as UV/Vis absorption spectroscopy, X‐ray diffraction, high‐resolution SEM, and photoelectrochemistry were used to characterize the structural, optical, and photoelectrochemical properties of the as‐synthesized films. As a photoanode in a photoelectrochemical cell, the axis‐oriented reactive film shows a maximum photocurrent density of 0.3 mA cm?2, as opposed to 0.075 mA cm?2 for non‐axis‐oriented (randomly oriented) TiO2 film.  相似文献   

5.
6.
7.
Synthesis of inorganic single crystals with exposed high‐reactivity facets is a desirable target in the catalytic chemistry field. Polyhedral AgBr microcrystals with an increased percentage of exposed high‐reactivity {111} facets have been successfully prepared for the first time, and the photocatalytic performance of these microcrystals when used as an AgBr/Ag plasmonic photocatalyst was investigated. The results indicate that the as‐prepared sample has high photocatalytic activity and, under the same measurement conditions, the photodegradation rate of methyl orange dye over these microcrystals is at least four times faster than with other shapes of AgBr/Ag microstructure, as well as 20 times faster than with the highly efficient Ag3PO4 photocatalyst. DFT calculations suggest that the AgBr (111) surface is mainly composed of unsaturated Ag atoms and has a relatively high surface energy, both of which are favorable for enhancing the photocatalytic activity of the AgBr/Ag polyhedron photocatalyst. This work not only provides a highly efficient plasmonic photocatalyst of polyhedral AgBr/Ag microcrystals with an increased percentage of exposed high‐reactivity AgBr {111} facets, but also demonstrates that the shape and crystalline quality of the exposed facets have an important influence on the photocatalytic activities.  相似文献   

8.
9.
Mixed‐metal sulfide Zn1?xMnxS nanorod‐assembled hierarchical hollow spheres were synthesized by a template‐free solvothermal process based on Ostwald ripening. In the reaction system, glycerol plays a key role in the formation of ZnxMn1?xS hierarchical hollow structures by a quasi‐microemulsion‐template mechanism. When applied as capacitor electrode material, the hierarchical Zn1?xMnxS hollow spheres show excellent electrochemical performance. Specifically, Zn0.25Mn0.75S hollow spheres can deliver a high specific capacitance of 664 F g?1 at a current rate of 1 A g?1, which is almost five times of that of MnS under the same conditions and higher than those of previously reported single Mn‐based compounds.  相似文献   

10.
Little hollow! Monodisperse ZnS hollow nanospheres (see figure) of about 200 nm in size have been fabricated on a large scale by a hydrothermal method and they show good photocatalytic activity in the decolorization of an aqueous solution of rhodamine B under UV irradiation.

  相似文献   


11.
Nanosheet‐assembled hierarchical V2O5 hollow microspheres are successfully obtained from V‐glycolate precursor hollow microspheres, which in turn are synthesized by a simple template‐free solvothermal method. The structural evolution of the V‐glycolate hollow microspheres has been studied and explained by the inside‐out Ostwald‐ripening mechanism. The surface morphologies of the hollow microspheres can be controlled by varying the mixture solution and the solvothermal reaction time. After calcination in air, hierarchical V2O5 hollow microspheres with a high surface area of 70 m2 g?1 can be obtained and the structure is well preserved. When evaluated as cathode materials for lithium‐ion batteries, the as‐prepared hierarchical V2O5 hollow spheres deliver a specific discharge capacity of 144 mA h g?1 at a current density of 100 mA g?1, which is very close to the theoretical capacity (147 mA h g?1) for one Li+ insertion per V2O5. In addition, excellent rate capability and cycling stability are observed, suggesting their promising use in lithium‐ion batteries.  相似文献   

12.
Core–shell TiO2 microspheres possess a unique structure and interesting properties, and therefore, they have received much attention. The high‐energy facets of TiO2 also are being widely studied for the high photocatalytic activities they are associated with. However, the synthesis of the core–shell structure is difficult to achieve and requires multiple‐steps and/or is expensive. Hydrofluoric acid (HF), which is highly corrosive, is usually used in the controlling high‐energy facet production. Therefore, it is still a significant challenge to develop low‐temperature, template‐free, shape‐controlled, and relative green self‐assembly routes for the formation of core–shell‐structured TiO2 microspheres with high‐energy facets. Here, we report a template‐ and hydrofluoric acid free solvothermal self‐assembly approach to synthesize core–shell TiO2 microspheres covered with high‐energy {116}‐facet‐exposed nanosheets, an approach in which 1,4‐butanediamine plays a key role in the formation of nanosheets with exposed {116} facets and the doping of nitrogen in situ. In the structure, nanoparticle aggregates and nanosheets with {116} high‐energy facets exposed act as core and shell, respectively. The photocatalytic activity for degradation of 2,4,6‐tribromophenol and Rhodamine B under visible irradiation and UV/Vis irradiation has been examined, and improved photocatalytic activity under visible light owing to the hierarchical core–shell structure, {116}‐plane‐oriented nanosheets, in situ N doping, and large surface areas has been found.  相似文献   

13.
Anatase TiO2 nanosheets with exposed {001} facets have been controllably modified under non‐thermal dielectric barrier discharge (DBD) plasma with various working gas, including Ar, H2, and NH3. The obtained TiO2 nanosheets possess a unique crystalline core/amorphous shell structure (TiO2@TiO2?x), which exhibit the improved visible and near‐infrared light absorption. The types of dopants (oxygen vacancy/surface Ti3+/substituted N) in oxygen‐deficient TiO2 can be tuned by controlling the working gases during plasma discharge. Both surface Ti3+ and substituted N were doped into the lattice of TiO2 through NH3 plasma discharge, whereas the oxygen vacancy or Ti3+ (along with the oxygen vacancy) was obtained after Ar or H2 plasma treatment. The TiO2@TiO2?x from NH3 plasma with a green color shows the highest photocatalytic activity under visible‐light irradiation compared with the products from Ar plasma or H2 plasma due to the synergistic effect of reduction and simultaneous nitridation in the NH3 plasma.  相似文献   

14.
Ultrathin two‐dimensional (2D) crystalline materials show high specific surface area (SA) of high energy (HE) facets, imparting a significant improvement in their performances. Herein we report a novel route to synthesize TiO2 nanofilms (NFs) with atomic thickness (<2.0 nm) through a solvothermal reaction mediated by the hydrogen‐bonding networks constructed by hydroquinone (HQ). The resultant TiO2 NFs have nearly 100 % exposed (001) facets and give an extremely high SA up to 487 m2 g?1. The synergistic effect of HQ and choline chloride plays a vital role in the formation of TiO2 NFs and in the exposure of HE (001) facets. Because of its ultrathin feature and exposed (001) facet, the N2‐annealled TiO2 NFs showed fast kinetics of lithium insertion/extraction, demonstrating foreseeable applications in the energy storage.  相似文献   

15.
Uniform bismuth oxide (Bi2O3) and bismuth subcarbonate ((BiO)2CO3) nanotubes were successfully synthesized by a facile solvothermal method without the need for any surfactants or templates. The synergistic effect of ethylene glycol (EG) and urea played a critical role in the formation of the tubular nanostructures. These Bi2O3 and (BiO)2CO3 nanotubes exhibited excellent CrVI‐removal capacity. Bi2O3 nanotubes, with a maximum CrVI‐removal capacity of 79 mg g?1, possessed high removal ability in a wide range of pH values (3–11). Moreover, Bi2O3 and (BiO)2CO3 nanotubes also displayed highly efficient photocatalytic activity for the degradation of RhB under visible‐light irradiation. This work not only demonstrates a new and facile route for the fabrication of Bi2O3 and (BiO)2CO3 nanotubes, but also provides new promising adsorbents for the removal of heavy‐metal ions and potential photocatalysts for environmental remediation.  相似文献   

16.
Monodisperse poly(methacrylic acid/ethyleneglycoldimethacrylate) (MAA/EGDMA) hollow microcapsules, which exhibit pH‐responsive behavior, are prepared by diffusion of cationic surfactants and hydrophobic interaction. During the association of the negatively charged hydrogel microspheres and an oppositely charged surfactant (cetyltrimethylammonium bromide, CTA(+)B), the hydrophobic polymer‐surfactant complexes that form are separated from the internal water; consequently, a hollow structure can be formed. Confocal laser scanning microscopy, UV spectro­scopy and zeta potential are employed to study the formation of the hollow structure during the diffusion of the cationic surfactant. The controlled release behavior of methylene blue as a model drug from the as‐prepared poly(MAA/EGDMA) microcapsules with a hollow structure is investigated under different pH conditions. The hollow structure can be retained, even during repetitive pH changes.

  相似文献   


17.
A bio‐photoelectrochemical cell (BPEC) based on a fuel‐free self‐circulation water–oxygen–water system was fabricated. It consists of Ni:FeOOH modified n‐type bismuth vanadate (BiVO4) photoanode and laccase catalyzed biocathode. In this BPEC, irradiation of the photoanode generates photocurrent for photo‐oxidation of water to oxygen, which is reduced to water again at the laccase biocathode. Of note, the by‐products of two electrode reactions could continue to be reacted, which means the H2O and O2 molecules are retained in an infinite loop of water–oxygen–water without any sacrificial chemical components. As a result, the assembled fuel‐free BPEC exhibits good performance with an open‐circuit potential of 0.97 V and a maximum power density of 205 μW cm?2 at 0.44 V. This BPEC based on a self‐circulation system offers a fuel‐free model to enhance multiple energy conversion and application in reality.  相似文献   

18.
A morphology evolution of SnO2 nanoparticles from low‐energy facets (i.e., {101} and {110}) to high‐energy facets (i.e., {111}) was achieved in a basic environment. In the proposed synthetic method, octahedral SnO2 nanoparticles enclosed by high‐energy {111} facets were successfully synthesized for the first time, and tetramethylammonium hydroxide was found to be crucial for the control of exposed facets. Furthermore, our experiments demonstrated that the SnO2 nanoparticles with exposed high‐energy facets, such as {221} or {111}, exhibited enhanced catalytic activity for the oxidation of CO and enhanced gas‐sensing properties due to their high chemical activity, which results from unsaturated coordination of surface atoms, superior to that of low‐energy facets. These results effectively demonstrate the significance of research into improving the physical and chemical properties of materials by tailoring exposed facets of nanomaterials.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号