首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

We describe the electrochemical preparation of bismuth nanoribbons (Bi-NRs) with an average length of 100 ± 50 nm and a width of 10 ± 5 μm by a potentiostatic method. The process occurs on the surface of a glassy carbon electrode (GCE) in the presence of disodium ethylene diamine tetraacetate that acts as a scaffold for the growth of the Bi-NRs and also renders them more stable. The method was applied to the preparation of Bi-NRs incorporated into reduced graphene oxide. This nanocomposite was loaded with the enzyme glucose oxidase onto a glassy carbon electrode. The resulting biosensor displays an enhanced redox peak for the enzyme with a peak-to-peak separation of about 28 mV, revealing a fast electron transfer at the modified electrode. The loading of the GCE with electroactive GOx was calculated to be 8.54 × 10−10 mol∙cm−2, and the electron transfer rate constant is 4.40 s−1. Glucose can be determined (in the presence of oxygen) at a relatively working potential of −0.46 V (vs. Ag|AgCl) in the 0.5 to 6 mM concentration range, with a 104 μM lower detection limit. The sensor also displays appreciable repeatability, reproducibility and remarkable stability. It was successfully applied to the determination of glucose in human serum samples.

A potentiostatic method was used to prepare reduced graphene oxide and bismuth nanoribbons nanocomposite on a glassy carbon electrode. This nanocomposite was loaded with enzyme glucose oxidase to fabricate a glucose biosensor.

  相似文献   

2.
Yang S  Lu Y  Atanossov P  Wilkins E  Long X 《Talanta》1998,47(3):735-743
A microfabricated glucose biosensor based on an amperometeric hydrogen peroxide electrode has been developed. A sol-gel layer with 5 A pore size and 2 mum thickness was used as the glucose oxidase entrapping matrix. The sol-gel matrix formed over the silicon-based sensor has good mechanical and chemical stability, and the ability to entrap a large amount of enzyme. The miniaturized electrode sensing system is composed of platinum as both working and counter electrodes and silver as a reference electrode. Nafion(R) coating was applied as the interference limiting layer. A series of technologies, such as standard photolithography, electron beam evaporation and image reverse lift-off were utilized for mass production allowing 143 electrodes to be produced at the same time. The effect of oxidable interferences was <10% of the background value of the sensor response. Calibration tests of a series of individual sensors manufactured from the same silicon wafer and dip coated in the same conditions, showed a highly reproducible response characteristics (linear range up to 500 mg dl(-1) and mean sensitivity of 0.54+/-0.14 nA mg(-1) dl(-1) (n=10)).  相似文献   

3.
A method is developed for quantitative determination of glucose using electrochemical impedance spectroscopy (EIS). The method is based on immobilized glucose oxidase (GOx) on the topside of gold mercaptopropionic acid self-assembled monolayers (Au-MPA-GOx SAMs) electrode and mediation of electron transfer by parabenzoquinone (PBQ). The PBQ is reduced to hydroquinone (H(2)Q), which in turn is oxidized at Au electrode in diffusion layer. An increase in the glucose concentration results in an increase in the diffusion current density of the H(2)Q oxidation, which corresponds to a decrease in the faradaic charge transfer resistance (R(ct)) obtained from the EIS measurements. Glucose is quantified from linear variation of the sensor response (1/R(ct)) as a function of glucose concentration in solution. The method is straightforward and nondestructive. The dynamic range for determination of glucose is extended to more than two orders of magnitude. A detection limit of 15.6 microM with a sensitivity of 9.66 x 10(-7) Omega(-1)mM(-1) is obtained.  相似文献   

4.
5.
Synthetic carbon allotrope chemistry is currently among the most rapidly growing topics in materials chemistry. The youngest and at the same time probably the most promising representative of new carbon allotropes is graphene. In this article we outline our recent contributions to chemical graphene formation and functionalization.  相似文献   

6.
A novel electrochemiluminescence (ECL) biosensor based on platinum nanoflowers (PtNFs)/graphene oxide (GO)/glucose oxidase (GODx) was discovered for glucose detection. PtNFs/GO was synthesized using a nontoxic, rapid, one-pot and template-free method and characterized by transmission electron microscopy (TEM) and high-resolution TEM techniques. The as-prepared PtNFs/GO with clean surface and multiporous structure was used to assemble GODx to form a glucose biosensor. Based on ECL results, the PtNFs/GO/GODx film-modified electrode displayed a high electrocatalytic activity towards the oxidation of glucose, which generated hydrogen peroxide (H2O2) to react with the luminol radicals thus enhanced the luminol ECL. Under the optimized conditions, two linear regions of ECL intensity to glucose concentration were valid in the range from 5 to 80 μmol/L (r?=?0.9957) and 80 to 1,000 μmol/L (r?=?0.9909) with a detection limit (S/N?=?3) of 2.8 μmol/L. In order to verify the reliability, the thus-fabricated biosensor was applied to determine the glucose concentration in glucose injection, glucose functional drink, and blood serum. The results indicated that the proposed biosensor presented good characteristics in terms of high sensitivity and good reproducibility for glucose determination, promising the applicability of this sensor in practical analysis.  相似文献   

7.
A feasible method to fabricate glucose biosensor was developed by covalent attachment of glucose oxidase (GOx) to a gold nanoparticle monolayer modified Au electrode. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of ferrocyanide followed and confirmed the assemble process of biosensor, and indicated that the gold nanoparticles in the biosensing interface efficiently improved the electron transfer between analyte and electrode surface. CV performed in the presence of excess glucose and artificial redox mediator, ferrocenemethanol, allowed to quantify the surface concentration of electrically wired enzyme (Gamma(E)(0)) on the basis of kinetic models reported in literature. The Gamma(E)(0) on proposed electrode was high to 4.1 x 10(-12) mol.cm(-2), which was more than four times of that on electrode direct immobilization of enzyme by cystamine without intermediate layer of gold nanoparticles and 2.4 times of a saturated monolayer of GOx on electrode surface. The analytical performance of this biosensor was investigated by amperometry. The sensor provided a linear response to glucose over the concentration range of 2.0 x 10(-5)-5.7 x 10(-3) M with a sensitivity of 8.8 microA.mM(-1).cm(-2) and a detection limit of 8.2 microM. The apparent Michaelis-Menten constant (K(m)(app)) for the sensor was found to be 4.3 mM. In addition, the sensor has good reproducibility, and can remain stable over 30 days.  相似文献   

8.
The bionanocomposite film consisting of glucose oxidase/Pt/functional graphene sheets/chitosan (GOD/Pt/FGS/chitosan) for glucose sensing is described. With the electrocatalytic synergy of FGS and Pt nanoparticles to hydrogen peroxide, a sensitive biosensor with a detection limit of 0.6 μM glucose was achieved. The biosensor also has good reproducibility, long-term stability and negligible interfering signals from ascorbic acid and uric acid comparing with the response to glucose. The large surface area and good electrical conductivity of graphene suggests that graphene is a potential candidate as a sensor material. The hybrid nanocomposite glucose sensor provides new opportunity for clinical diagnosis and point-of-care applications.  相似文献   

9.
Vapor-liquid-solid (VLS) grown silica nanowires (SiO(2)NWs) have been deposited electrophoretically on a gold electrode and utilized for covalent immobilization of glucose oxidase (GOx). Covalent binding has been achieved via 3-aminopropyltriethoxysilane (APTES) modification and N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide chemistry. Scanning electron microscopy, transmission electron microscopy and cyclic voltammetry techniques have been used to characterize SiO(2)NW and GOx/APTES/SiO(2)NW/Au bioelectrode. Electrochemical studies reveal that SiO(2)NW increases the effective electro-active surface area thus resulting in higher loading of enzyme. Response characteristics show linearity in the range of interest 25-300 mg dl(-1), with a detection limit of 11 mg dl(-1), sensitivity: 0.463 μA (mg dl(-1))(-1) and regression coefficient of 0.992.  相似文献   

10.
We constructed the transferred ZnO biosensor and the grown ZnO biosensor by two different nano-ZnO immobilization approaches. And the influence of different assembly processes on the biosensor performance has been systematically investigated and compared. An enhanced sensitivity of the grown ZnO biosensor is found to be 52% higher than that of the transferred ZnO biosensor. Correspondingly, the other properties are also better in the grown ZnO biosensor, including the response time, the detection limit and the linear range. These results are well consistent with the fact that more glucose oxidase is immobilized on the well-aligned ZnO arrays, which have higher specific surface area and more direct electron communication path, in the grown sensor than the randomly distributed and stacked ZnO nanorods in the transferred sensor. The nano-ZnO grown directly has been demonstrated more desirable for enzymatic immobilization and signal transduction in the high performance biosensors.  相似文献   

11.
Carbon nanoscroll (CNS) with extraordinary electrical, physical and optical properties is an ideal candidate on sensor applications. It has great potential in biosensing owing to its outstanding properties like large surface-to-volume ratio, high conductivity, high flexibility and biocompatibility. In this research, we demonstrate a CNS-based biosensor to electrochemically detect glucose with high specificity and sensitivity. To this end, glucose absorption effect on the sensing area in the form of carrier concentration and quantum capacitance variations is investigated. Also, the caused electrical response on CNS as a detection element is analytically proposed, in which significant current increase of the CNS-based biosensor is observed after exposure to glucose. The proposed CNS-based glucose biosensor exposes higher current compared to that of carbon nanotube counterpart for analogous ambient conditions. Moreover, the comparative results provide evidence of good consensus between the model and experimental data of platinum nanoparticles/graphene nanoscrolls (Pt/GSS) and Pt/nitrogen-doped GSS (Pt/N-GSS) nanocomposites-based biosensors. Main findings of this research can be served as a high throughput platform to analytically predict the behaviour of the sensing mechanism in glucose biosensors. The results further reveal that the CNS biosensor demonstrates not only high sensitivity and broad linear range but also long-term stability and low detection limit.  相似文献   

12.
The formation of covalently linked composites of multi–walled carbon nanotubes (MWCNT) and glucose oxidase (GOD) with high-function density for use as a biosensing interface is described. The reaction intermediates and the final product were characterized by using FT–IR spectroscopy, and the MWCNT-coated GOD nanocomposites were examined by atomic force microscopy (AFM) and transmission electron microscopy (TEM). Interestingly, it was found that the GOD–MWCNT composites are highly water soluble. Electrochemical characterization of the GOD–MWCNT composites that were modified on a glassy carbon electrode shows that the covalently linked GOD retains its bioactivity and can specifically catalyze the oxidation of glucose. The oxidation current shows a linear dependence on the glucose concentration in the solution in the range of 0.5–40 mM with a detection limit of 30 μM and a detection sensitivity of 11.3 μA/mMcm2. The present method may provide a way to synthesize MWCNT related composites with other biomolecules and for the construction of enzymatic reaction-based biofuel cells and biosensors. Supported by grants from the National Natural Science Foundation of China (NSFC, No. 20125515; 90206037; 20375016) and the Natural Science Foundation of Jiangsu Province (Grant No. BK 2004210)  相似文献   

13.
Amperometric biosensors are widely used for clinical, food industry and environmental control. A universal platform allowing immobilization of different enzymes could provide a fast and easy way to design new sensors, but the main drawback effect with oxidase based biosensors is the production of hydrogen peroxide. The direct electron transfer is a way to limit the H2O2 production. A modified electrode described by Zhao et al. (Bioelectrochemistry, 69(2):158, 2006), based on immobilization of glucose oxidase/colloidal gold nanoparticles on a glassy carbon electrode by Nafion film, has been used. Its sensitivity is 0.4 μA mM?1 cm?2, reproducibility is 3.0%, detection limit is 0.37 mM, response to glucose is linear up to 20 mM; limit of detection is 0.37 mM and response time is about 1.5 min. This sensor displays a formal redox potential compatible with a direct electron transfer, and has been tested for its response in time and GOx denaturation by X-ray photoelectron spectroscopy. Vanishing of disulphide bonds of GOx has been observed after a period in a saturating solution of glucose but this does not appear determinant in loss of enzyme activity.  相似文献   

14.
Wang  Fang  Gong  Wencheng  Wang  Lili  Chen  Zilin 《Mikrochimica acta》2015,182(11):1949-1956

Reduced graphene oxide (RGO) was used to construct a bienzyme biosensor containing horseradish peroxidase (HRP) and glucose oxidase (GOx). A poly(toluidine blue) (pTB) film containing RGO acted as both enzyme immobilization matrix and electron transfer mediator. The bienzyme biosensor was characterized by electrochemical techniques and displays a highly sensitive amperometric response to glucose and hydrogen peroxide (H2O2) at a potential as low as −0.1 V (vs. SCE). It is shown that use of RGO causes a strong enhancement on the amperometric responses. H2O2 formed by the action of GOx in the presence of oxygen can be further reduced by HRP in the pTB film contacting the RGO modified electrode. In the absence of oxygen, glucose oxidation proceeds by another mechanism in which electron transfer occurs from GOx to the electrode and with pTB acting as the mediator. Amperometric responses to glucose and H2O2 follow Michaelis-Menten kinetics. The experimental conditions were optimized, and under these conditions glucose can be determined in the 80 μM to 3.0 mM range with a detection limit of 50 μM. H2O2, in turn, can be quantified in up to 30.0 μM concentration with a detection limit of 0.2 μM. The bienzyme biosensor is reproducible, repeatable and stable. Finally, it has been successfully applied to the determination of glucose in plasma samples.

Schematic representation of glocuse detection at GCE/RGO/pTB-HRP-GOx.

  相似文献   

15.
16.
Doretti L  Ferrara D  Gattolin P  Lora S 《Talanta》1997,44(5):859-866
A new method of physically immobilizing a biomolecule of analytical interest in poly(vinyl alcohol) cryogels was developed to obtain suitable biosensors. An amperometric glucose sensor was constructed using glucose oxidase immobilized on membranes obtained by a freezing-thawing cyclic process. No chemical cross-linking agent was used. Sensor behaviour was evaluated electrochemically with a hydrogen peroxide electrode. The glucose content in standard solutions was determined and linear calibration curves in the 5 x 10(-5)-3 x 10(-3) mol 1(-1) range were obtained. Temperature and pH effects on the electrochemical response were described and kinetic parameters in the immobilized system were evaluated.  相似文献   

17.
In a new type of glucose biosensor, the intrinsic green fluorescence of glucose oxidase (GOD) is used to provide the analytical information. It was found that the fluorescence of GOD changes during interaction with glucose. Fluorescence is excited at 450 nm and measured at ? 500 nm, which is a wavelength range that is compatible with glass and plastic fibres. The signal response is fully reversible because oxygen is a second substrate. A major feature of this sensor relies on the fact that the recognition element is identical with the transducer element.Enzyme solutions are entrapped at the fibre end within a semipermeable membrane. The change in fluorescence occurs over a small glucose concentration range (typically 1.5–2 mM), the signal at lower and higher glucose levels being unaffected by changes in glucose concentration. Response times of 2–30 min and regeneration times of 1–10 min are observed. Effects of pH and oxygen concentrations are also investigated. To achieve as extended analytical range (e.g., 2.5–10 mM) and shorter response times, kinetic measurements are suggested.  相似文献   

18.
D Zheng  SK Vashist  K Al-Rubeaan  JH Luong  FS Sheu 《The Analyst》2012,137(16):3800-3805
A rapid and simple procedure was developed for the preparation of a highly stable and leach-proof glucose oxidase (GOx)-bound glassy carbon electrode (GCE). Crosslinked GOx via glutaraldehyde was drop-cast on a KOH-pretreated GCE followed by drop-casting of 3-aminopropyltriethoxysilane (APTES) to form a stable bioactive layer. At -0.45 V, the biosensor exhibited a wide dynamic detection range of 0.5-48 mM for commercial glucose and 1.3-28.2 mM for Sugar-Chex blood glucose linearity standards. Several endogenous electroactive substances and drug metabolites commonly found in blood were tested and provoked no signal response. To our knowledge, the developed procedure is the most rapid method for preparing a glucose biosensor. The biosensor suffered no biofouling after 7 days of immersion in Sugar-Chex blood glucose. With excellent production reproducibility, GOx-bound electrodes stored dry at room temperature retained their initial activity after several weeks.  相似文献   

19.
Journal of Solid State Electrochemistry - An easily prepared biosensor based on reduced graphene oxide (rGO) and glucose oxidase (GOx) enzyme was developed to monitor the enzymatic hydrolysis...  相似文献   

20.
A monolithic silica gel matrix with entrapped glucose oxidase was constructed as a bioactive element in an optical biosensor for glucose determination. Physicochemical and biochemical characterizations of the catalytic matrix were performed, and the intrinsic fluorescence of immobilised glucose oxidase (GOD) was investigated in the UV and visible range by performing steady state and time course measurements. In all cases, the silica gel matrix proved to be a suitable support for optical biosensing owing to its superior optical properties (e.g., high transmittance and reliable fluorescence and GOD absorption spectra after immobilisation). From steady state measurements, calibration curves were obtained as a function of glucose concentration. When time course measurements were performed, the silica gel support displayed a larger linear calibration range and higher sensitivity than other immobilisation systems. In addition, a glucose optical biosensor was developed and characterised using as catalytic element GOD immobilised on a gel disk bound to a bundle of optical fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号