首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three kinds of amide dendritic gelators, G1-C12-G1, G2-C12-G2 and gelator-1, were synthesized, and their self-assemble behavior in methyl methacrylate (MMA) was firstly investigated. The structures of the amide dendritic gelators were confirmed by 1H-NMR and Mass spectra (MS). The gelation ability of the amide dendritic gelators was researched through tube inversion experiment, the results of which showed that different structures led to quite different gelation ability, including gel-sol temperature and critical concentration to form a stable gel. SEM experiments showed that three kinds of gelator formed different gel morphologies in MMA, all of which were nanoscale gel. All the three amide dendritic gelators could not only form stable gel network at certain temperature with different concentrations in MMA, but also in each case, an optically transparent gel was formed, which indicated dendrimers in the MMA had a good compatibility.  相似文献   

2.
Chiral amino acid‐ and amino alcohol‐oxalamides are well‐known as versatile and efficient gelators of various lipophilic and polar organic solvents and water. To further explore the capacity of the amino acid/oxalamide structural fragment as a gelation‐generating motif, the dioxalamide dimethyl esters 16Me and 19Me , and dicarboxylic acid 26OH / 29OH derivatives containing flexible methylene bridges with odd ( 9 ; n=7) and even ( 6 ; n=4) numbers of methylene groups were prepared. Their self‐assembly motifs and gelation properties were studied by using a number of methods (FTIR, 1H NMR spectroscopy, CD, TEM, DSC, XRPD, molecular modeling, MMFF94, and DFT). In contrast to the previously studied chiral bis(amino acid or amino alcohol) oxalamide gelators, in which no chiral morphology was ever observed in the gels, the conformationally more flexible 16Me , 19Me , 26OH , and 29OH provide gelators that are capable of forming diverse aggregates of achiral and chiral morphologies, such as helical fibers, twisted tapes, nanotubules, straight fibers, and tapes, in some cases coexisting in the same gel sample. It is shown that the differential scanning calorimetry (DSC)‐determined gelation enthalpies could not be correlated with gelator and solvent clogP values. Spectroscopic results show that intermolecular hydrogen‐bonding between the oxalamide units provides the major and self‐assembly directing intermolecular interaction in the aggregates. Molecular modeling studies reveal that molecular flexibility of gelators due to the presence of the polymethylene bridges gives three conformations ( zz , p1 , and p2 ) close in energy, which could form oxalamide hydrogen‐bonded layers. The aggregates of the p1 and p2 conformations tend to twist due to steric repulsion between neighboring iBu groups at chiral centers. The X‐ray powder diffraction (XRPD) results of 16Me and 19Me xerogels prove the formation of p1 and p2 gel aggregates, respectively. The latter results explain the formation of gel aggregates with chiral morphology and also the simultaneous presence of aggregates of diverse morphology in the same gel system.  相似文献   

3.
Supramolecular gels find applications in various fields. Usually, a specific gelator is useful only for a specific application. This one‐gelator‐one‐application format is one factor that limits the usefulness of supramolecular gels. We report the synthesis of a library of gelators from a common core by using a click‐chemistry approach. Thus, the click reaction of β‐azido‐4,6‐O‐benzylidene–galactopyranoside ( 1 ) with various alkynes gave 11 different gelators having varying gelation abilities. Whereas gelators having alkyl‐chain substituents congealed alkanes and tetraethylorthosilicate (TEOS), the gelators having aromatic substituents congealed aromatic solvents. We exploited this difference in gelling behavior in the templated synthesis of silica rods and porous plastics. The styrene gel of gelator 2 j was polymerized, and the gelator was removed by washing to obtain porous polystyrene. The TEOS gel of gelator 2 b was polymerized to silica, and the gelator template was removed by calcination to give microstructured silica rods. We also developed fluorescent gelator 2 f by this method, which might find applications by virtue of its fluorescence in the assembled state.  相似文献   

4.
Fluorescein‐, benzothiazole‐, quinoline‐, stilbene‐, and carbazole‐containing fluorescent gelators have been synthesized by connecting gelation‐driving segments, including l ‐isoleucine, l ‐valine, l ‐phenylalanine, l ‐leucine residue, cyclo(l ‐asparaginyl‐l ‐phenylalanyl), and trans‐(1R,2R)‐diaminocyclohexane. The emission behaviors of the gelators were investigated, and their gelation abilities studied against 15 solvents. The minimum gel concentration, variable‐temperature spectroscopy, transmission electron microscopy, scanning electron microscopy, fluorescence microscopy (FM), and confocal laser scanning microscopy (CLSM) were used to characterize gelation. The intermolecular hydrogen bonding between the N?H and C=O of amide, van der Waals interactions and π–π stacking play important roles in gelation. The colors of emission are related to the fluorescence structures of gelators. Fibrous aggregates characterized by the color of their emission were observed by FM. 3D images are produced by the superposition of images captured by CLSM every 0.1 μm to a settled depth. The 3D images show that the large micrometer‐sized aggregates spread out three dimensionally. FM observations of mixed gelators are studied. In the case of gelation, two structurally related gelators with the same gelation‐driving segment lead to the gelators build up of the same aggregates through similar hydrogen‐bonding patterns. When two gelators with structurally different gelation‐driving segments induce gelation, the gelators build up each aggregate through individual hydrogen‐bonding patterns. A fluorescent reagent that was incorporated into the aggregates of gels through van der Waals interactions was developed. The addition of this fluorescent reagent enables the successful observation of nonfluorescent gelators’ aggregates by FM.  相似文献   

5.
A series of bis‐amides decorated with pyridyl and phenyl moieties derived from L ‐amino acids having an innocent side chain (L ‐alanine and L ‐phenyl alanine) were synthesized as potential low‐molecular‐weight gelators (LMWGs). Both protic and aprotic solvents were found to be gelled by most of the bis‐amides with moderate to excellent gelation efficiency (minimum gelator concentration=0.32–4.0 wt. % and gel–sol dissociation temperature Tgel=52–110 °C). The gels were characterized by rheology, DSC, SEM, TEM, and temperature‐variable 1H NMR measurements. pH‐dependent gelation studies revealed that the pyridyl moieties took part in gelation. Structure–property correlation was attempted using single‐crystal X‐ray and powder X‐ray diffraction data. Remarkably, one of the bis‐pyridyl bis‐amide gelators, namely 3,3‐Phe (3‐pyridyl bis‐amide of L ‐phenylalanine) displayed outstanding shape‐sustaining, load‐bearing, and self‐healing properties.  相似文献   

6.
Creating structure–property correlations at different distance scales is one of the important challenges to the rational design of molecular gelators. Here, a series of dihydroxylated derivatives of long‐chain fatty acids, derived from three naturally occurring molecules—oleic, erucic and ricinoleic acids—are investigated as gelators of a wide variety of liquids. Conclusions about what constitutes a more (or less!) efficient gelator are based upon analyses of a variety of thermal, structural, molecular modeling, and rheological results. Correlations between the manner of molecular packing in the neat solid or gel states of the gelators and Hansen solubility data from the liquids leads to the conclusion that diol stereochemistry, the number of carbon atoms separating the two hydroxyl groups, and the length of the alkanoic chains are the most important structural parameters controlling efficiency of gel formation for these gelators. Some of the diol gelators are as efficient or even more efficient than the well‐known, excellent gelator, (R)‐12‐hydroxystearic acid; others are much worse. The ability to form extensive intermolecular H‐bonding networks along the alkyl chains appears to play a key role in promoting fiber growth and, thus, gelation. In toto, the results demonstrate how the efficiency of gelation can be modulated by very small structural changes and also suggest how other structural modifications may be exploited to create efficient gelators.  相似文献   

7.
《化学:亚洲杂志》2017,12(1):52-59
Two dumbbell‐shaped organogelators with a p ‐quaterphenylene core were synthesized, and their self‐assembly properties were investigated. These low‐molecular‐weight gelators could form self‐supporting gels in many apolar organic solvents with an H‐type aggregation form through a synergic effect of π–π stacking, intermolecular translation‐related hydrogen bonding, and van der Waals forces. In comparison to the p ‐terphenylene‐cored gelator, the extended π‐conjugated segment improved the gelation efficiency significantly with enhanced gelation rate. Additionally, these p ‐quaterphenylene‐centered gelators exhibited strong fluorescence emission induced by aggregation, which not only provided an in situ method to optically monitor the gelation process, but also endowed these self‐assemblies with substantial applications in sensing explosives.  相似文献   

8.
Synthetic self-assembling oligopeptide gelators are an important class of compounds which form thermoreversible gels in various organic solvents as well as in aqueous medium. These gels are soft, viscoelastic materials which are envisaged for useful applications in biological and material sciences. The terminally protected self-assembling synthetic tripeptide Boc-Ala-Aib-β-Ala-OMe 1 (Aib: α-aminoisobutyric acid i.e. dimethyl glycine and β-Ala: β-Alanine) forms gels in various organic solvents, whereas its structural analog i.e. the peptide Boc-Ala-Gly-β-Ala-OMe 2 (another self-assembling synthetic tripeptide) fails to form gels under similar conditions and this issue has been addressed. The terminally protected tripeptide Boc-Ala-Val-Ala-OMe 3 has been found to form gels in different aromatic organic solvents. Several structural analogs of peptide 3 [using small structural changes either in protecting groups (at the N or C-terminal position) or in amino acid side chains] have been synthesized, characterized and studied for gelation to address the question how structural changes can regulate the gelation property. Results of the gelation studies indicate that some structural changes are useful to make new peptide gelators with some variations in gelation property and efficiency, while a few structural changes in the protecting groups are really detrimental, leading to abolition the gelation property. These gels are studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-Transform Infrared (FT-IR) spectroscopy and 1H NMR studies.  相似文献   

9.
The gelation properties of derivatives of N‐alkylated (R)‐12‐hydroxystearic acid hydrazide (n‐HSAH, n=0, 2, 6, 10; n is the length of an n‐alkyl chain on the terminal nitrogen atom) in a wide variety of liquids is reported. The n‐HSAH compounds were derived from a naturally occurring alkanoic acid, (R)‐12‐hydroxystearic acid (R‐12HSA), and although they differ from the analogous N‐alkyl (R)‐12‐hydroxystearamides (n‐HSAA) only by the presence of one N?H group, their behavior as gelators is very different. For example, the parent molecule (0‐HSAH) is a supergelator in ethylene glycol, in which it forms self‐standing gels that are self‐healing, partially thixotropic, moldable, and load‐bearing; gels of 0‐HSAA are not self‐standing. 0‐HSAH is structurally the simplest molecular gelator of which we are aware that is capable of forming both self‐standing and partially thixotropic gels. Also, diffusion of the cationic dye erythrosine B and the anionic dye methylene blue in 0‐HSAH/ethylene glycol gel blocks is much slower than the self‐diffusion of ethylene glycol. Polarizing optical microscopy, X‐ray diffraction, and FTIR studies revealed that the self‐assembled fibrillar networks (SAFINs) of the gels are crystalline, and that 0‐HSAH molecules may be arranged in a triclinic subcell with bilayer stacking. The SAFINs are stabilized by strong hydrogen‐bonding interactions between the hydrazide groups of adjacent molecules and a perpendicular hydrogen‐bonding network between the pendent hydroxyl groups of 0‐HSAH. The other n‐HSAH (n=2, 6, 10) molecules appear to be arranged in orthorhombic subcells with monolayers and strong hydrogen‐bonding interactions between the hydrazide group of one gelator molecule and the hydroxyl group of a neighboring one. These results show how small structural modifications of structurally simple gelator molecules can be exploited to form gels with novel properties that can lead potentially to valuable applications, such as in drug delivery.  相似文献   

10.
基于胆固醇的新型小分子胶凝剂的合成与胶凝行为   总被引:1,自引:0,他引:1  
薛敏  苗青  房喻 《物理化学学报》2013,29(9):2005-2012
设计合成了3种以丙二胺为连接臂(L)、苯环为A单元的A(LS)2型双胆固醇(S)类小分子胶凝剂: 化合物1(邻位), 化合物2(间位)和化合物3(对位), 考察了其在30种溶剂中的胶凝行为. 结果表明, 苯环取代位置的不同对化合物的胶凝性质有决定性影响. 就胶凝溶剂的数量来讲, 对位取代的化合物3的胶凝能力明显高于邻位和间位取代的化合物12. 此外, 化合物23可以形成5个室温胶凝体系, 且化合物3/二甲苯凝胶透明、柔韧,以至于可以形成超分子薄膜. 傅里叶变换红外(FTIR)光谱和核磁共振氢谱(1H NMR)研究表明, 胶凝剂分子之间的氢键和π-π堆积作用在凝胶形成过程中发挥了一定的作用. X射线衍射(XRD)研究表明在化合物1/苯凝胶中, 胶凝剂分子聚集为六方堆积结构, 进而形成贯穿整个凝胶体系的网络结构.  相似文献   

11.
Four new chiral bis(amino alcohol)oxalamides (1-4: amino alcohol=leucinol, valinol, phenylglycinol, and phenylalaninol, respectively) have been prepared as low-molecular-weight organic gelators. Their gelation properties towards various organic solvents and mixtures were determined and these were then compared to related bis(amino acid) oxalamide gelators. Spectroscopic (FTIR, (1)H NMR) and X-ray diffraction studies revealed that the primary organization motif of (S,S)-1 and racemate 1 (rac-1) in lipophilic solvents involved the formation of inverse bilayers. The X-ray crystal structure of (S,S)-1 also shows this type of bilayer organization. The crystal structure of rac-2 reveals meso bilayers of hydrogen-bonded aggregates. Within the bilayers formed, the gelator molecules are connected by cooperative hydrogen bonding between oxalamide units and OH groups, while the interbilayer interactions are realized through lipophilic interactions between the iBu groups of leucinol. Oxalamide meso-1 lacks any gelation ability and crystallizes in monolayers. In dichloromethane rac-1 forms an unstable gel; this is prone to crystallization as a result of the formation of symmetrical meso bilayers. In contrast, in aromatic solvents rac-1 forms stable gels; this indicates that enantiomeric bilayers are formed. Oxalamide rac-1 is capable of gelling a volume of toluene three times larger than (S,S)-1. A tranmission electron microscopy investigation of rac-1 and (S,S)-1 toluene gels reveals the presence of thinner fibers in the former gel, and, hence, a more compact network that is capable of immobilizing a larger volume of the solvent. The self-assembly of these types of gelator molecules into bilayers and subsequent formation of fibrous aggregates can be explained by considering the strength and direction of aggregate forces (supramolecular vectors) in three-dimensional space.  相似文献   

12.
A new class of L ‐glutamic gelators, LG12(CH2)nCOOH, containing different lengths of methylene spacer were synthesized. It was found that the gelation ability of these compounds themselves was very weak. However, when another compound, p‐xylylenediamine (XEA), was introduced, the gelation ability was improved greatly. In particular, LG12(CH2)10COOH showed super‐gelation ability in the presence of XEA, which could immobilize almost all of the solvents except methanol. Moreover, the formed supramolecular gels even could be molded. Interestingly, some supramolecular gels of LG12(CH2)nCOOH and XEA could respond to multiple stimuli, such as heating, shaking, sonication, and acid/base. The studies of CD spectra suggested that the supramolecular chirality induced by self‐assembled chiral gelator molecules in gels could be tuned by the length of methylene spacer. In addition, the supramolecular chirality could be regulated as on/off by heating–cooling or external NH3/HCl. This would facilitate the development of dual chiroptical switches by temperature and acid/base.  相似文献   

13.
A series of bicholesteryl‐based gelators with different central linker atoms C, N, and O (abbreviated to GC , GN , and GO , respectively) have been designed and synthesized. The self‐assembly processes of these gelators were investigated by using gelation tests, field‐emission scanning electron microscopy, field‐emission transmission electron microscopy, UV/Vis absorption, IR spectroscopy, X‐ray diffraction, rheology, and contact‐angle experiments. The gelation ability, self‐assembly morphology, rheological, and surface‐wettability properties of these gelators strongly depend on the central linker atom of the gelator molecule. Specifically, GC and GN can form gels in three different solvents, whereas GO can only form a gel in N,N‐dimethylformamide (DMF). Morphologies from nanofibers and nanosheets to nanospheres and nanotubes can be obtained with different central atoms. Gels of GC , GN , and GO formed in the same solvent (DMF) have different tolerances to external forces. All xerogels gave a hydrophobic surface with contact angles that ranged from 121 to 152°. Quantum‐chemical calculations indicate that the GC , GN , and GO molecules have very different steric structures. The results demonstrate that the central linker atom can efficiently modulate the molecular steric structure and thus regulate the supramolecular self‐assembly process and properties of gelators.  相似文献   

14.
Cholesteryl glycinate anthraquinone‐2‐carboxylamide (CGAC), an electron acceptor, and cholesteryl glycinate 9,10‐dimethyloxyl anthracene‐2‐carboxylamide (CGDAC), an electron donor, were synthesized and characterized via 1H NMR, IR and elemental analysis. Gelation studies demonstrated that acetic acid and some mixed solvents containing more than 30% acetic acid could be efficiently gelled by CGAC. Unlike CGAC, CGDAC could not gel any of the solvents tested. SEM and AFM studies showed that the gelator in the gel system of CGAC‐acetic acid self‐assembled into a fiber‐like tubular structure, and the tubules were further self‐tangled into networks. Introduction of CGDAC into the CGAC‐acetic acid system had little effect upon the gel properties of the CGAC‐acetic acid system. This observation was explained by considering interruption of the possible donor‐acceptor interaction between CGAC and CGDAC due to protonation of the latter. Comparing the structure and gelation properties of CGAC with those of similar structures reported in the literature further indicates that a small change in the structure of the linker between the A (aromatic) part and S (steroidal) part of the ALS type gelators affects the gelation behaviors of the ALS type gelators significantly.  相似文献   

15.
A series of primary ammonium monocarboxylate (PAM) salts derived from β‐alanine derivatives of pyrene and naphthalene acetic acid, along with the parent acids, were explored to probe the plausible role of orthogonal hydrogen bonding resulting from amide???amide and PAM synthons on gelation. Single‐crystal X‐ray diffraction (SXRD) studies were performed on two parent acids and five PAM salts in the series. The data revealed that orthogonal hydrogen bonding played an important role in gelation. Structure–property correlation based on SXRD and powder X‐ray diffraction data also supported the working hypothesis upon which these gelators were designed. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) and cell migration assay on a highly aggressive human breast cancer cell line, MDA‐MB‐231, revealed that one of the PAM salts in the series, namely, PAA.B2 , displayed anticancer properties, and internalization of the gelator salt in the same cell line was confirmed by cell imaging.  相似文献   

16.
Both molecular and crystal‐engineering approaches were exploited to synthesize a new class of multidrug‐containing supramolecular gelators. A well‐known nonsteroidal anti‐inflammatory drug, namely, indomethacin, was conjugated with six different l ‐amino acids to generate the corresponding peptides having free carboxylic acid functionality, which reacted further with an antiviral drug, namely, amantadine, a primary amine, in 1:1 ratio to yield six primary ammonium monocarboxylate salts. Half of the synthesized salts showed gelation ability that included hydrogelation, organogelation and ambidextrous gelation. The gels were characterized by table‐top and dynamic rheology and different microscopic techniques. Further insights into the gelation mechanism were obtained by temperature‐dependent 1H NMR spectroscopy, FTIR spectroscopy, photoluminescence and dynamic light scattering. Single‐crystal X‐ray diffraction studies on two gelator salts revealed the presence of 2D hydrogen‐bonded networks. One such ambidextrous gelator (capable of gelling both pure water and methyl salicylate, which are important solvents for biological applications) was promising in both mechanical (rheoreversible and injectable) and biological (self‐delivery) applications for future multidrug‐containing injectable delivery vehicles.  相似文献   

17.
A new fluorinated version of a cyclic β‐aminoalcohol gelator derived from 1,2,3,4‐tetrahydroisoquinoline is presented. The gelator is able to gel various nonprotic solvents through OH???N hydrogen bonds and additional CH???F interactions due to the introduction of fluorine. A bimolecular lamellar structure is formed in the gel phase, which partly preserves the pattern of molecular organization in the single crystal. The racemate of the chiral gelator shows lower gelation ability than its enantiomer because of a higher tendency to form microcrystals, as shown by X‐ray diffraction analysis. The influence of fluorination on the self‐assembly of the gelator and the properties of the gel was investigated in comparison to the original fluorine‐free gel system. The introduction of fluorine brings two new features. The first is good recognition of o‐xylene by the gelator, which induces an in situ transition from gels of o‐xylene and of an o‐xylene/toluene mixture to identical single crystals with unique tubular architecture. The second is the enhanced stability of the toluene gel towards ions, including quaternary ammonium salts, which enables the preparation of a stable toluene gel in the presence of chloroaurate or chloroplatinate. The gel system can be used as a template for the synthesis of spherical gold nanoparticles with a diameter of 5 to 9 nm and wormlike platinum nanostructures with a diameter of 2 to 3 nm and a length of 5 to 12 nm. This is the first example of a synthesis of platinum nanoparticles in an organogel medium. Therefore, the appropriate introduction of a fluorine atom and corresponding nonbonding interactions into a known gelator to tune the properties and functions of a gel is a simple and effective tactic for design of a gel system with specific targets.  相似文献   

18.
We developed novel supramolecular gelators with simple molecular structures that could harden a broad range of solvents: aqueous solutions of a wide pH range, organic solvents, edible oil, biodiesel, and ionic liquids at gelation concentrations of 0.1-2 wt %. The supramolecular gelators were composed of a long hydrophobic tail, amino acids and gluconic acid, which were prepared by liquid-phase synthesis. Among seven types of the gelators synthesized, the gelators containing L-Val, L-Leu, and L-Ile exhibited high gelation ability to various solvents. These gelators were soluble in aqueous and organic solvents, and also in ionic liquids at high temperature. The gelation of these solvents was thermally reversible. The microscopic observations (TEM, SEM, and CLSM) and small-angle X-ray scattering (SAXS) measurements suggested that the gelator molecules self-assembled to form entangled nanofibers in a large variety of solvents, resulting in the gelation of these solvents. Molecular mechanics and density functional theory (DFT) calculations indicated the possible molecular packing of the gelator in the nanofibers. Interestingly, the gelation of an ionic liquid by our gelator did not affect the ionic conductivity of the ionic liquid, which would provide an advantage to electrochemical applications.  相似文献   

19.
低相对分子质量凝胶作为治理原油泄漏的材料具有一些优异的性能,但其在水油相中的成胶规律仍不明确,本文以有机酸及有机胺为原料设计合成了一系列有机盐。 通过核磁共振波谱仪(NMR)、傅里叶红外光谱仪(FTIR)、扫描电子显微镜(SEM)和倒挂实验等技术手段表征了有机盐的结构和成胶性能。 结果表明,有机盐A3C3(A3:肉桂酸;C3:月桂胺)在室温下能使原油形成稳定凝胶,成胶溶度为质量分数6%,该分子在溶剂中自组装形成树枝状三维网状结构。 凝胶的形成需要分子间π-π堆积作用、氢键、静电作用和范德华力等多种作用力协同作用,分子间的π-π堆积作用有利于凝胶的形成,含有多个苯环的凝胶因子更易在芳香族溶剂中形成凝胶。 这些成胶规律对处理原油泄漏的低相对分子质量凝胶因子的设计合成具有实际的指导意义。  相似文献   

20.
WANG  Yujiang  TANG  Liming  WANG  Li  YU  Jian 《中国化学》2009,27(11):2279-2283
In this paper, four gelators (defined as G1 – G4 ) were prepared from 3,3′,4,4′‐benzophenonetetracarboxylic acid (BPTA) and para‐hydroxylpyridine or meta‐hydroxylpyridine at molar ratios 1:2 and 1:4 respectively, and characterized by 1H NMR, IR, UV‐Vis spectra and elemental analysis. Due to the amphiphilic features, all the gelators were able to gel water via cooling their aqueous solution under different stimulations. The structure of the assembling fibers and the macroscopic properties of the gels were investigated by multiple techniques. The results indicated that the minimum gelator concentration (MGC) increased by the order of G1 , G2 , G3 and G4 , while the gel‐to‐sol dissociation temperature (Tgel) decreased by the same order, which were explained from the assembling structures of the gels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号