首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lewis酸碱理论研究目前尚处于定性阶段,在环境化学上应用甚少,Gutmann等曾采用热力学与~(31)P NMR方法定量了少量有机溶剂的酸碱性,Kamlet等也利用~(19)F NMR测定了一些有机物的碱性.本文提出了一种利用多种溶剂/水分配系数来定量苯系物酸碱性的方法,该法简便、快速,有广泛的适用性。  相似文献   

2.
N-Heterocyclic carbene (NHC) derived 3-azabutadienes 1 and 2 have been prepared by a single-step reaction of the corresponding NHC with cyclohexyl isocyanide. Compound 1 features π-basic, delocalized nucleophilic sites over the 3-azabutadiene moiety, therefore allowing for coordinating with small Lewis acids, such as AlCl3, GaCl3, and Me2SAuCl, to form diverse classic Lewis adducts 3 – 5 . Combination of 1 with B(C6F5)3 or [Ph3C][B(C6F5)4] resulted in single-electron transfer and the obtained radical cation was detected by EPR. In addition, a frustrated Lewis pair comprised of the π-basic 1 and BPh3 effects the splitting of the O−H bond of phenol and the N−H bond of imidazole to give 7 and 8 , respectively. An intrinsic bond orbital (IBO) analysis of the pathway leading to 8 showcases the transformation of the delocalized π-electrons of 1 to a newly formed C−H localized σ-bond.  相似文献   

3.
Michael S. Wrigley 《合成通讯》2017,47(19):1771-1776
B(C6F5)3 was found to catalyze the reaction between trimethylsilyl azide and benzylic acetates. Secondary and tertiary benzylic acetates were competent substrates in this reaction providing the azide products in moderate to high yields. Mechanistic experiments are consistent with the possible formation of a Lewis acid-base pair between the B(C6F5)3 and trimethylsilyl azide.  相似文献   

4.
Herein, we report the synthesis of boroles that are linked by a conjugated phenylene spacer. The characterization of these compounds was completed by NMR and UV/Vis spectroscopy, as well as X‐ray crystal diffraction. Furthermore, the coordination behavior of these oligoboroles towards five electronically and sterically disparate pyridine derivatives was studied and revealed fundamental differences in the properties of the resulting adducts. The experimental results were supported by density functional theory (DFT) calculations that showed a charge‐transfer effect upon formation of the pyridine‐4‐carbonitrile adduct. By chemical reduction of a tris(borolyl)‐substituted benzene derivative, a hexaanion was isolated as a result of a two‐electron reduction of each borolyl moiety. The interaction of the borolyl units through the aryl spacer, and the possible increase of the Lewis acidity due to the conjugation of the borolyl moieties, were investigated by base transfer reactions.  相似文献   

5.
Reactions of some typical acid halides of carbonic and trithiocarbonic acids and of orthophosphoric and sulfuric acids with Lewis acids and Lewis bases are compared. Acylium, perfluoroacylium, thioacylium, and even sulfonylium ions are obtainable with Lewis acids. It is possible by conductivity measurements and by electronic and above all IR spectroscopic investigations to determine whether the 1:1 adducts of acid halides and Lewis compounds are acylium or sulfonylium salts or donor-acceptor complexes. In the reaction with Lewis bases, the halogen atom in the acid halide is replaced by the electron donor, generally with formation of nonpolar molecular compounds or complexes.  相似文献   

6.
A highly bent triarylborane, 9‐boratriptycene, was generated in solution by selective protodeboronation of the corresponding tetra‐aryl boron ate complex with the strong Brønsted acid HNTf2. The iptycene core confers enhanced Lewis acidity to 9‐boratriptycene, making it unique in terms of structure and reactivity. We studied the stereoelectronic properties of 9‐boratriptycene by quantifying its association with small N‐ and O‐centered Lewis bases, as well as with sterically hindered phosphines. The resultant Lewis adducts exhibited unique structural, spectroscopic, and photophysical properties. Beyond the high pyramidalization of the 9‐boratriptycene scaffold and its low reorganization energy upon Lewis base coordination, quantum chemical calculations revealed that the absence of π donation from the triptycene aryl rings to the boron vacant pz orbital is one of the main reasons for its high Lewis acidity.  相似文献   

7.
8.
9.
10.
A new family of bifunctional catalysts (N-oxides-Ti(OiPr)4 (2:1)) containing a Lewis acid and a Lewis base was developed and applied to the catalytic cyanosilylation of ketones. Utilizing rac((1R,2S) and (1S,2R))-1-(2′-pyridylmethyl)-2-diphenylhydroxymethylpyrrolidine N-oxide-titanium (2:1) complex and N-benzyl-diethanolamine N-oxide-titanium (2:1) complex as catalysts, the cyanosilylation products were obtained in 42-97% yield. Based on experimental phenomena and kinetic studies, a catalytic cycle was proposed to explain the remarkable activities of these catalysts. Investigations indicated that rac((1R,2S) and (1S,2R))-1-(2′-pyridylmethyl)-2-diphenylhydroxymethylpyrrolidine N-oxide-titanium (2:1) complex and N-benzyl-diethanolamine N-oxide-titanium (2:1) complex should promote the reaction via a dual activation of the ketone by the titanium and TMSCN by the N-oxide.  相似文献   

11.
12.
13.
14.
Lewis acid/Lewis base adduct formation of the P(CF3)2- ion and acetone leads to a reduced negative hyperconjugation and, therefore, limits the C--F bond activation. The resulting increased thermal stability of the P(CF3)2- ion in the presence of acetone allows selective substitutions and enables the synthesis of the first example of a chiral, bidentate bis(trifluoromethyl)phosphane ligand: a DIOP derivative, [(2,2-dimethyl-1,3-dioxolane-4,5-diyl)bis(methylene)]bis(diphenylphosphane), in which the phenyl groups at the phosphorus atoms are replaced by strong electron-withdrawing trifluoromethyl groups. The resulting high electron-acceptor strength of the synthesized bidentate (CF3)2P ligand is demonstrated by a structural and vibrational study of the corresponding tetracarbonyl-molybdenum complex. The stabilization of the P(CF3)2- ion in the presence of acetone is based on the formation of a dynamic Lewis acid/Lewis base couple, (CF3)2PC(CH3)2O-. Although there is no spectroscopic evidence for the formation of the formulated alcoholate ion, the intermediate formation of (CF3)2PC(CH3)2O- could be proved through the reaction with (CF3)2PP(CF3)2, which yields the novel phosphane-phosphinite ligand (CF3)2PC(CH3)2OP(CF3)2. This ligand readily forms square-planar Pt(II) complexes upon treatment with solid PtCl2.  相似文献   

15.
A highly bent triarylborane, 9-boratriptycene, was generated in solution by selective protodeboronation of the corresponding tetra-aryl boron ate complex with the strong Brønsted acid HNTf2. The iptycene core confers enhanced Lewis acidity to 9-boratriptycene, making it unique in terms of structure and reactivity. We studied the stereoelectronic properties of 9-boratriptycene by quantifying its association with small N- and O-centered Lewis bases, as well as with sterically hindered phosphines. The resultant Lewis adducts exhibited unique structural, spectroscopic, and photophysical properties. Beyond the high pyramidalization of the 9-boratriptycene scaffold and its low reorganization energy upon Lewis base coordination, quantum chemical calculations revealed that the absence of π donation from the triptycene aryl rings to the boron vacant pz orbital is one of the main reasons for its high Lewis acidity.  相似文献   

16.
17.
In this work, the interaction between Lewis bases, especially N-heterocyclic carbenes (NHCs), and hindered neutral silicon derivatives featuring high Lewis acidity is described. The formation of normal and abnormal Lewis adducts could be controlled by varying the acidity of the corresponding tetravalent spiro organosilane. Some DFT calculations permitted to gain insight into the thermodynamics of the NHC–spirosilane interaction featuring various NHCs differing in size and σ-donor capacity. Spirosilanes are introduced as new Lewis partners in frustrated Lewis pair (FLP) chemistry and some FLP-type reactivities are presented, in particular the activation of formaldehyde that could occur with both hindered NHCs and phosphines.  相似文献   

18.

Ligand properties of coordination and organometallic compounds are examined on the basis of acid-base interactions of metal-containing bases and Lewis acids. Such interactions lead to homo- or heteronuclear di- and polynuclear complexes. Special attention is given to coordinatively-unsaturated molecules of classic Werner complexes, o -hydroxyazomethine chelates, metal carbonyls and their derivatives, ferrocenes with donor fragments, and coordinated heteroaromatic compounds.  相似文献   

19.
Catalytic hydrogenation that utilizes frustrated Lewis pair (FLP) catalysts is a subject of growing interest because such catalysts offer a unique opportunity for the development of transition-metal-free hydrogenations. The aim of our recent efforts is to further increase the functional-group tolerance and chemoselectivity of FLP catalysts by means of size-exclusion catalyst design. Given that hydrogen molecule is the smallest molecule, our modified Lewis acids feature a highly shielded boron center that still allows the cleavage of the hydrogen but avoids undesirable FLP reactivity by simple physical constraint. As a result, greater latitude in substrate scope can be achieved, as exemplified by the chemoselective reduction of α,β-unsaturated imines, ketones, and quinolines. In addition to synthetic aspects, detailed NMR spectroscopic, DFT, and (2)H isotopic labeling studies were performed to gain further mechanistic insight into FLP hydrogenation.  相似文献   

20.
The chemistry of dicationic diboranes with two BII atoms that are engaged in direct B−B bonding is by enlarge unexplored, although these molecules have intriguing properties due to their combined Lewis acidic and electron-donor properties. Unsymmetric dicationic diboranes are extremely rare, but especially attractive due to their polarized B−B bond. In this work we report the directed synthesis of several stable unsymmetric dicationic diboranes by reaction between the electron-rich ditriflato-diborane B2(hpp)2(OTf)2 (hpp=1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-α]pyrimidinate) and phosphino-pyridines, establishing B−N and B−P bonds with the diborane concomitant with triflate elimination. In the case of 2-((ditertbutylphosphino)methyl)pyridine, the B−N bond is formed instantly, but the B−P bond formation requires (due to steric constraints) several days at ambient conditions for completion, creating an intermediate that could be used for frustrated Lewis pair (FLP)-like chemistry. Here we test its reaction with an aldehyde, and propose a new type of FLP-like chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号