首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contrary to widely held beliefs, many concentrated aqueous solutions of strong electrolytes and nonelectrolytes are shown to behave ideally by calculating the activity of water (a w) from vapor pressure data. The mole fraction of water (x w) is equal to the water activity a w(Raoult’s Law) when the mole fraction of water is calculated by accounting for water strongly bound to the solute, which is then not available to act as solvent. In this case x w=(55.51−mH T)/(55.51−mH T+im), where m is the molality of the solute particles, i is the stoichiometric number of solute particles produced per mole of dissolved solute, and H T is the thermodynamic hydration number H T. Published reservations about previous work of this type are addressed. The values of H T vary little over wide ranges of concentration and correlate with the Hofmeister series, the B coefficient of the Jones-Dole viscosity equation, and other properties of water. Activity coefficients of the bulk or “free” water remain at unity even at high concentrations.  相似文献   

2.
It has been reported that ion enrichment phenomena are observed in liquid chromatographic processes with an aqueous mobile phase on the columns packed with nonionic materials. However, the mechanism of the ion enrichment is not at all well understood. In this study, we investigated the retention and enrichment behaviors of simple inorganic anions on a C18‐bonded silica column and a cross‐linked hydroxylated methacrylic polymer gel column with pure aqueous mobile phases containing various electrolytes. We show that the stacking of ionic solutes can successfully be accounted for by the ion partition model, and it takes place due to the effect of the background coion in the eluent and/or sample solution on the distribution of the ions between the bulk water and the water incorporated in the packing material, which acts as the stationary phase. Using the ion exclusion effect of fixed anionic charges on a packing material as well as the ion stacking by partition, we developed a simple and versatile method for effective enrichment of anionic solutes in aqueous solutions. The enrichment factor and the elution time of the stacked ion zone can be predicted by the ion partition model.  相似文献   

3.
Static and dynamic laser light scattering were used to bring evidence of large-scale supramolecular structure in solutions of low molar mass electrolytes, nonelectrolytes, and mixtures of liquids. It was shown that solutes are distributed inhomogeneously on large length scales. Regions of higher and lower solute concentration exist in solution and give sufficient scattering contrast for experimental observation. A detailed light scattering study showed that these regions can be characterized as close-to-spherical discrete domains of higher solute density in a less dense rest of solution. These domains do contain solvent inside and can be therefore characterized as loose associates (giant clusters, aggregates). Their size distributions are significantly broad, ranging up to several hundreds of nanometers. Characteristic sizes of these inhomogenities thus exceed angstrom dimensions of individual molecules by several orders of magnitude. The number of solute molecules per domain varies approximately in the range 10(3)-10(8). Phenomena described were observed in a very broad range of solutes and solvents. Among others, selected data on most common substances of great chemical and biological importance such as sodium chloride, citric acid, glucose, urea, acetic acid, and ethanol are presented.  相似文献   

4.
In this critical review, the significance of the term 'activity' is examined in the context of the properties of aqueous solutions. The dependence of the activity of water(l) at ambient pressure and 298.15 K on solute molality is examined for aqueous solutions containing neutral solutes, mixtures of neutral solutes and salts. Addition of a solute to water(l) always lowers its thermodynamic activity. For some solutes the stabilisation of water(l) is less than and for others more than in the case where the thermodynamic properties of the aqueous solution are ideal. In one approach this pattern is accounted for in terms of hydrate formation. Alternatively the pattern is analysed in terms of the dependence of practical osmotic coefficients on the composition of the aqueous solution and then in terms of solute-solute interactions. For salt solutions the dependence of the activity of water on salt molalities is compared with that predicted by the Debye-Hückel limiting law. The analysis is extended to consideration of the activities of water in binary aqueous mixtures. The dependence on mole fraction composition of the activity of water in binary aqueous mixtures is examined. Different experimental methods for determining the activity of water in aqueous solutions are critically reviewed. The role of water activity is noted in a biochemical context, with reference to the quality, stability and safety of food and finally with regard to health science.  相似文献   

5.
In two papers Zavitsas described a model for the thermodynamic properties of aqueous solutions of a single electrolyte or nonelectrolyte (Zavitsas, J Phys Chem B 105:7805–7817, 2001; J Solution Chem 39:301–317, 2010) in which he assumed that part of the water is so strongly bound to the solute that it can be considered as part of it, and thus only the remaining unbound water is considered to be the solvent. He showed that when the usual water mole fraction was replaced by the resulting mole fraction of unbound water, obtained by optimizing an effective hydration number, basically linear relations were obtained to fairly high molalities for the freezing temperature lowering, boiling temperature elevation, and the water activity/vapor pressure of water. However, Zavitsas only considered the properties of the solvent, not the solute. In this paper we derive the corresponding expressions for the activity coefficient of the solute for the usual molality scale based on 1 kg of water, for the modified molality scale based on 1 kg of unbound water, for the mole fraction scale based on the total number of moles of water, and for the modified mole fraction scale based on the number of moles of unbound water. These equations show that if the hydration number is larger than the stoichiometric ionization number of the electrolyte, then all four types of mean activity coefficients are predicted to always be >1 (nearly all hydration numbers reported by Zavitsas for electrolyte solutions are greater than the corresponding ionization numbers), which directly conflicts with extensive experimental and theoretical evidence that the mean activity coefficients of electrolytes in aqueous solutions always initially decrease below unity. In contrast, for nonelectrolyte solutions, the hydration model of Zavitsas gives more realistic values of the activity coefficients.  相似文献   

6.
Osmotic coefficients for methanol solutions of sodium iodide are calculated from recently published vapor pressure data. These data furnish a reference solute for other isopiestic studies in this solvent. Data are reported for three additional electrolytes and two non-electrolytes. These data are compared with the osmotic coefficients of the same solutes in water to illustrate and in some instances to elucidate the relative importance of various interactions in solutions.  相似文献   

7.
To demonstrate an important distinction between the electrolytes and nonelectrolytes, surface tension of aqueous solutions of typical nonelectrolytes, sucrose and glucose, was measured as a function of temperature and concentration. The presence of sucrose or glucose molecules in the surface region affects the surface tension in the same way as the presence of an ion does. There is, however, a difference in the temperature coefficient of the surface tension between typical nonelectrolyte solutions, sucrose and glucose, and alkali halide solutions. The entropy of surface formation of sucrose and glucose solutions is the same as that of pure water, while that of alkali halide solutions decreases with concentration. The relation between this entropy change and the formation of electric double layers was discussed.  相似文献   

8.
The understanding of the molecular mechanisms underlying the early stages of crystallisation is still incomplete. In the case of calcium carbonate, experimental and computational evidence suggests that phase separation relies on so‐called pre‐nucleation clusters (PNCs). A thorough thermodynamic analysis of the enthalpic and entropic contributions to the overall free energy of PNC formation derived from three independent methods demonstrates that solute clustering is driven by entropy. This can be quantitatively rationalised by the release of water molecules from ion hydration layers, explaining why ion association is not limited to simple ion pairing. The key role of water release in this process suggests that PNC formation should be a common phenomenon in aqueous solutions.  相似文献   

9.
Among twenty-two 1:1 electrolytes examined, LiSCN, CsSCN, KSCN and CsI have a considerable effect on the aqueous solubilities of a series of nonelectrolytes. LiSCN shows a salting-in effect for all the nonelectrolytes examined including 1-octanol, benzene, naphthalene and biphenyl while CsSCN and CsI show a salting-out effect for 1-octanol but a salting-in effect for all the aromatic hydrocarbons. The effect of NaSCN and KSCN on the solubilities of naphthalene and biphenyl results in an anomalous concentration depencence, i.e., both salting-in and salting-out effects occur depending upon the electrolyte concentration. It is suggested that the anomalous salt effects may partly be explained through perturbation of preexisting ion-ion structural hydration interaction upon introduction of the solute molecules.  相似文献   

10.
Hydrophobic hydration, the perturbation of the aqueous solvent near an apolar solute or interface, is a fundamental ingredient in many chemical and biological processes. Both bulk water and aqueous solutions of apolar solutes behave anomalously at low temperatures for reasons that are not fully understood. Here, we use (2)H NMR relaxation to characterize the rotational dynamics in hydrophobic hydration shells over a wide temperature range, extending down to 243 K. We examine four partly hydrophobic solutes: the peptides N-acetyl-glycine-N'-methylamide and N-acetyl-leucine-N'-methylamide, and the osmolytes trimethylamine N-oxide and tetramethylurea. For all four solutes, we find that water rotates with lower activation energy in the hydration shell than in bulk water below 255 +/- 2 K. At still lower temperatures, water rotation is predicted to be faster in the shell than in bulk. We rationalize this behavior in terms of the geometric constraints imposed by the solute. These findings reverse the classical "iceberg" view of hydrophobic hydration by indicating that hydrophobic hydration water is less ice-like than bulk water. Our results also challenge the "structural temperature" concept. The two investigated osmolytes have opposite effects on protein stability but have virtually the same effect on water dynamics, suggesting that they do not act indirectly via solvent perturbations. The NMR-derived picture of hydrophobic hydration dynamics differs substantially from views emerging from recent quasielastic neutron scattering and pump-probe infrared spectroscopy studies of the same solutes. We discuss the possible reasons for these discrepancies.  相似文献   

11.
The thermodynamic theory of binary aqueous solutions of electrolytes taking into account the electrostatic interaction of ions and their hydration and association was extended to multicomponent solutions. Equations for calculating the osmotic coefficient of multicomponent solutions from parameter estimates (hydration and association numbers under standard conditions) determined for the corresponding binary subsystems were substantiated. Interval parameter estimates were used to calculate the osmotic coefficients for several three-five-component aqueous solutions containing both nonelectrolytes and electrolytes. A comparison of the results with the literature data showed that cross interactions between components could be ignored for the multicomponent solutions studied.  相似文献   

12.
Measurements of water-proton spin-lattice relaxation rate constants as a function of magnetic field strength [magnetic relaxation dispersion (MRD)] in aqueous solutions of paramagnetic solutes reveal a peak in the MRD profile. These previously unobserved peaks require that the time correlation functions describing the water-proton-electron dipolar coupling have a periodic contribution. In aqueous solutions of iron(III) ion the peak corresponds to a frequency of 8.7 cm-1, which the authors ascribe to the motion of water participating in the second coordination sphere of the triply charged solute ion. Similar peaks of weaker intensity in the same time range are observed for aqueous solutions of chromium(III) chloride as well as for ion pairs formed by ammonium ion with trioxalatochromate(III) ion. The widths of the dispersion peaks are consistent with a lifetime for the periodic motion in the range of 5 ps or longer.  相似文献   

13.
Marmur has claimed that large values of activity coefficients for nonelectrolytes, particularly in the context of hydrophobic interactions between solutes in aqueous solution at ambient temperature and pressure, cannot be accounted for by thermodynamics, and has suggested that association (self-assembly) of solute molecules in solution solves this dilemma. We show that the analysis of Marmur is incorrect, specifically because the equilibrium in solution between monomeric solute molecules and associated solute molecules is entirely ignored. We show further that activity coefficients such as that for nitromethane solute in hexane solvent, 39.7, and that for solute hexane in solvent water, 4.48 x 10(5), can be calculated as 31.9 and 4.71 x 10(5), respectively, by methods based on well-known molecule-molecule interactions. No assumption of self-assembly is required.  相似文献   

14.
Atmospheric aerosols contain a significant fraction of water-soluble organic compounds, including dicarboxylic acids. Water activities at approximately 298.15 K (including data for highly supersaturated solutions) of oxalic, malonic, succinic, glutaric, maleic, malic, and methyl succinic acids are first correlated as a function of concentration, treating the acids as nondissociating components. Methods proposed by Clegg et al. (J. Aerosol. Sci. 2001, 32, 713-738), and by Clegg and Seinfeld (J. Phys. Chem. A 2004, 108, 1008-1017) for estimating water activities and solute activity coefficients in aqueous mixtures containing both electrolytes and uncharged solutes are then evaluated from comparisons with literature data. These data include water activities, solubilities, and determinations of the eutonic points of solutions containing up to five acids, and solutions containing one or more acids and the salts (NH(4))(2)SO(4), NH(4)NO(3), or NaCl. The extended Zdanovskii-Stokes-Robinson approach of Clegg and Seinfeld yields the more accurate predictions for aqueous mixtures containing dicarboxylic acids only, and for aqueous mixtures of the acids and salts (though by a lesser margin). A number of hybrid modeling approaches, which contain elements of both methods, are outlined.  相似文献   

15.
Interaction and reorganization contributions to solvation enthalpies of nonelectrolytes in aqueous solutions of amides of carboxylic acids with different degree of N-substitution and N-methylpyrrolidone are calculated. The data are discussed using structurally thermodynamic characteristics of water-amide systems obtained by us previously. It is found that the type of concentration dependence of the solvation enthalpy of nonelectrolytes in all solutions investigated is determined by the type of reorganization component. It is shown that the highest solvation exothermicity of nonelectrolytes in water is due to the lowest value of the reorganization contribution in spite of that nonelectrolytes interact weaker with water than with non aqueous components.  相似文献   

16.
Bubble coalescence behavior in aqueous electrolyte (MgSO(4), NaCl, KCl, HCl, H(2)SO(4)) solutions exposed to an ultrasound field (213 kHz) has been examined. The extent of coalescence was found to be dependent on electrolyte type and concentration, and could be directly linked to the amount of solubilized gas (He, Ar, air) in solution for the conditions used. No evidence of specific ion effects in acoustic bubble coalescence was found. The results have been compared with several previous coalescence studies on bubbles in aqueous electrolyte and aliphatic alcohol solutions in the absence of an ultrasound field. It is concluded that the impedance of bubble coalescence by electrolytes observed in a number of studies is the result of dynamic processes involving several key steps. First, ions (or more likely, ion-pairs) are required to adsorb at the gas/solution interface, a process that takes longer than 0.5 ms and probably fractions of a second. At a sufficient interfacial loading (estimated to be less than 1-2% monolayer coverage) of the adsorbed species, the hydrodynamic boundary condition at the bubble/solution interface switches from tangentially mobile (with zero shear stress) to tangentially immobile, commensurate with that of a solid-liquid interface. This condition is the result of spatially nonuniform coverage of the surface by solute molecules and the ensuing generation of surface tension gradients. This change reduces the film drainage rate between interacting bubbles, thereby reducing the relative rate of bubble coalescence. We have identified this point of immobilization of tangential interfacial fluid flow with the "critical transition concentration" that has been widely observed for electrolytes and nonelectrolytes. We also present arguments to support the speculation that in aqueous electrolyte solutions the adsorbed surface species responsible for the immobilization of the interface is an ion-pair complex.  相似文献   

17.
Densities of several aqueous solutions of two macrocyclic aminals, 1,3,5,7-tetraazatricyclo[3.3.1.1(3,7)]decane (HMT) and 1,3,6,8-tetraazatricyclo[4.4.1.1(3,8)]dodecane (TATD) at concentrations from 0.001 up to 0.2?mol?kg?1 (molal) between 2.0 and 5.0?°C every 0.5?°C, were obtained using a magnetic float densimeter designed, constructed and calibrated according to the available literature. The effect of the two solutes on the temperature of the maximum density of the water ?? was established. The dependence of density with molality is linear in the entire range of concentration, at all temperatures, and the dependence of ???? with composition, for both aqueous systems, does not follow the Despretz law. Based on the variation of ???? with composition, the solutes are classified as liquid water structure breakers; the effect of TATD on the solvent is greater. The results are discussed in terms of solute?Csolvent and solute?Csolute interactions.  相似文献   

18.
A linear free energy relationship was found for the log (mole fraction) of solutes in a wide variety of organic solvents with the solvatochromic parameters and the Hildebrand solubility parameter. The solutes were the highly dipolar gases sulfur dioxide, hydrogen chloride, hydrogen bromide, and ammonia at 25°C and 1 atm. partial pressure of the solute. It was found that correlations were greatly improved if solvatochromic parameters for the solvent as a monomer were used rather than the values for the bulk solvent. In solutions with these very dipolar gases, the mole ratio of solute to solvents approaches unity in many of the solutions, so a molecule of solute is interacting primarily with a particular molecule of the solvent. Therefore, the use of the solvatochromic parameters for the solvent as monomer is physically reasonable.  相似文献   

19.
Density and chemical masses are two of the most important parameters tracked in chemical plant flowsheets. Unfortunately, chemical plant laboratories commonly avoid density and solvent concentration measurements. Without these data, it is difficult to reconcile solute concentrations reported by the laboratories with the total mass and volume tracked in flowsheets. In this paper, the Laliberté-Cooper density model is used in conjunction with a numerical algorithm to simultaneously estimate both density and water content from measured solute concentrations for aqueous electrolyte solutions. The algorithm numerically optimizes the water content until the sum of the water and solute concentrations (in mass per volume units) equals the density predicted by the Laliberté-Cooper model for that composition. The algorithm was tested against an experimental dataset of simulated nuclear waste supernatant solutions containing mixtures of ten different electrolytes with total ionic strengths up to 8 mol⋅L−1. The algorithm was able to predict the measured densities with an R2 of 0.9912 and an average relative percent error of just 0.05%. The model error was not correlated to the estimated water content or any of the electrolyte concentrations. Thus, the algorithm can be successfully used to simultaneously predict density and water content of aqueous electrolyte solutions containing many electrolytes at high concentrations from analytical data reported in moles or mass of solute per volume.  相似文献   

20.
In ternary aqueous solutions, hydrophobic solutes such as alcohols tend to aggregate with surfactants to form mixed micelles. These systems can be studied by meas of the functions of transfer of hydrophobic solutes from water to aqueous solutions of surfactant. These thermodynamic functions often go through extrema in the critical micellar concentration (CMC) region of the surfactant. A simple model based on interactions between surfactant and hydrophobic solute monomers, on the distribution of the hydrophobic solute between water and the micelles and on the shift in the CMC induced by the hydrophobic solute, can simulate the magnitude and trends of the transfer functions using parameters which are mostly derived from the binary systems. In order to check the model more quantitatively, volumes and heat capacities of transfer of alcohols from water to aqueous solutions of a nonionic surfactant, octyldimethylamine oxide, were measured. A quantitative agreement was achieved with three adjustable parameters. Good fits are also obtained for the transfers to the ionic surfactants, octylamine hydrobromide and sodium dodecylsulfate. When the equilibrium displacement contribution is small, the distribution constants and the partial molar properties of the alcohols in the micellar phase agree well with the parameters obtained with similar models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号