共查询到20条相似文献,搜索用时 15 毫秒
1.
Marie Hurtgen Antoine Debuigne Maryse Hoebeke Catherine Passirani Nolwenn Lautram Ange Mouithys‐Mickalad Pierre‐Henri Guelluy Christine Jérôme Christophe Detrembleur 《Macromolecular bioscience》2013,13(1):106-115
Water‐soluble star‐like poly(vinyl alcohol)/C60 and poly{[poly(ethylene glycol) acrylate]‐co‐(vinyl acetate)}/C60 nanohybrids are prepared by grafting macroradicals onto C60 and are assessed as photosensitizers for photodynamic therapy. The photophysical and biological properties of both nanohybrids highlight key characteristics influencing their overall efficiency. The macromolecular structure (linear/graft) and nature (presence/absence of hydroxyl groups) of the polymeric arms respectively impact the photodynamic activity and the stealthiness of the nanohybrids. The advantages of both nanohybrids are encountered in a third one, poly[(N‐vinylpyrrolidone)‐co‐(vinyl acetate)]/C60, which has linear grafts without hydroxyl groups, and shows a better photodynamic activity.
2.
Monika Rymarczyk‐Macha Szczepan Zapotoczny Maria Nowakowska 《Journal of polymer science. Part A, Polymer chemistry》2006,44(8):2675-2683
A copolymer of poly(vinyl naphthalene) grafted onto poly(vinyl alcohol) has been synthesized with nitroxide‐mediated controlled radical polymerization. By separating the processes of the generation of grafting sites and polymerization, we can avoid the formation of the homopolymer. Because of its architecture, the polymer is soluble in water, despite the high content of hydrophobic groups. The naphthalene chromophores tend to aggregate, forming hydrophobic microdomains in an aqueous solution. Those aggregates exist in a very constrained environment that leads to extraordinarily large redshifts of both the absorption and emission of the polymer. The polymer acts as an efficient photosensitizer in photoinduced electron transfer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2675–2683, 2006 相似文献
3.
Dr. Régis Y. N. Gengler Prof. Dr. Dimitrios Gournis Akfiny H. Aimon Dr. Luminita M. Toma Prof. Dr. Petra Rudolf 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(24):7594-7600
Much of the research effort concerning the nanoscopic properties of clays has focused on its mechanical applications, for example, as nanofillers for polymer reinforcement. To broaden the horizon of what is possible by exploiting the richness of clays in nanoscience, herein we report a bottom‐up approach for the production of hybrid materials in which clays act as the structure‐directing interface and reaction media. This new method, which combines self‐assembly with the Langmuir–Schaefer technique, uses the clay nanosheets as a template for the grafting of C60 into a bi‐dimensional array, and allows for perfect layer‐by‐layer growth with control at the molecular level. In contrast to the more‐common growth of C60 arrays through nanopatterning, our approach can be performed under atmospheric conditions, can be upscaled to areas of tenths of cm2, and can be applied to almost any hydrophobic substrate. Herein, we report a detailed study of this approach by using temperature‐dependent X‐ray diffraction, spectroscopic measurements, and STM. 相似文献
4.
Synthesis of Cationic Dumbbell-shaped Fullerene Nanostructures as Potential Photodynamic Sensitizers
A design of novel hydrophilic tetracationic dumbbell-shaped [60]fullerene nanostructures was made by balancing the hydrophilicity and hydrophobicity characteristics of the fullerene adduct for their potential application as photodynamic sensitizers in the PDT treatment. A sequential protection-deprotection reaction pathway was applied for the functional differentiation between primary and secondary amine moieties of pentaethylene hexamine. Synthesis of the target molecule involves two key steps of unsymmetrical esterification and amidation of malonic acid and subsequent fullerenation. The synthetic strategy was accomplished using mild reaction conditions in the intermediate molecule preparation and led a moderate overall product yield. 相似文献
5.
采用水热方法,在493 K条件下反应72小时,合成了氟基蒙脱土(F-MMT),在这种F-MMT中,硅酸盐结构中的一些OH-被F-取代。采用溶液插层方法,制备了聚乙烯醇/F-MMT纳米复合材料(PVA/F-MMT)。采用X 射线衍射、扫描电镜和透射电镜对F-MMT 和 PVA/F-MMT纳米复合材料进行了表征;结果表明,片状结构的F-MMT均匀分散于PVA中,形成了层离结构的纳米复合材料。热重分析、力学性能和紫外可见光谱的测试结果表明,在没有牺牲光学性能情况下,PVA/F-MMT纳米复合材料的热稳定性和力学性能都得到了提高。力学和热学性能的提高归功于F-MMT均匀而好的分散于聚合物基体中,以及PVA中的 OH- 和F-MMT 中F-之间强的氢键作用。 相似文献
6.
Yixin Xiang Houluo Cong Lei Li Sixun Zheng 《Journal of polymer science. Part A, Polymer chemistry》2016,54(12):1852-1863
Poly(N‐vinyl pyrrolidone)‐block‐poly(N‐vinyl carbazole)‐block‐poly(N‐vinyl pyrrolidone) (PVP‐b‐PVK‐b‐PVP) triblock copolymers were synthesized via sequential reversible addition‐fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process. First, 1,4‐phenylenebis(methylene)bis(ethyl xanthate) was used as a chain transfer agent to mediate the radical polymerization of N‐vinyl carbazole (NVK). It was found that the polymerization was in a controlled and living manner. Second, one of α,ω‐dixanthate‐terminated PVKs was used as the macromolecular chain transfer agent to mediate the radical polymerization of N‐vinyl pyrrolidone (NVP) to obtain the triblock copolymers with various lengths of PVP blocks. Transmission electron microscopy (TEM) showed that the triblock copolymers in bulks were microphase‐separated and that PVK blocks were self‐organized into cylindrical microdomains, depending on the lengths of PVP blocks. In aqueous solutions, all these triblock copolymers can self‐assemble into the spherical micelles. The critical micelle concentrations of the triblock copolymers were determined without external adding fluorescence probe. By analyzing the change in fluorescence intensity as functions of the concentration, it was judged that the onset of micellization occurred at the concentration while the FL intensity began negatively to deviate from the initial linear increase with the concentration. Fluorescence spectroscopy indicates that the self‐assembled nanoobjects of the PVP‐b‐PVK‐b‐PVP triblock copolymers in water were capable of emitting blue/or purple fluorescence under the irradiation of ultraviolet light. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1852–1863 相似文献
7.
Summary: A multistep synthetic procedure for preparing novel C60‐anchored two‐armed poly(tert‐butyl acrylate) was developed. First, two‐armed poly(tert‐butyl acrylate) bearing a malonate ester core with well‐controlled molecular weight was synthesized through atom transfer radical polymerization. The effective Bingel reaction between C60 and the well‐defined polymer was then carried out to yield C60‐anchored polymer. GPC, 1H NMR, and UV‐vis spectroscopy indicated that the C60‐anchored polymer was a monosubstituted and ‘closed’ 6,6‐ring‐bridged methanofullerene derivative.
8.
Muhammad Mumtaz Christine Labrugère Eric Cloutet Henri Cramail 《Journal of polymer science. Part A, Polymer chemistry》2010,48(17):3841-3855
The synthesis by oxidative polymerization of well‐defined poly(3,4‐ethylenedioxythiophene) (PEDOT) nano‐objects in the presence of modified and unmodified poly(N‐vinylpyrrolidone)‐based copolymers used as stabilizers in aqueous media is reported. Ammonium persulfate or a mixture of ammonium persulfate with CuCl2 or CuBr2 was used as oxidants. The effects of several parameters such as the molar mass and the concentration of the stabilizer as well as the nature of the oxidants on the size, morphology, and the conductivity of the PEDOT particles have been investigated. The distribution of the reactive moieties along the copolymer stabilizer backbone was shown to be crucial to get well‐defined PEDOT nano‐objects. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3841–3855, 2010 相似文献
9.
Hye Min Jung Eun Mi Lee Byung Chul Ji Yulin Deng Jae Deuk Yun Jeong Hyun Yeum 《Colloid and polymer science》2007,285(6):705-710
Poly(vinyl acetate) (PVAc)–poly(vinyl alcohol)–montmorillonite (MMT) nanocomposite microspheres were prepared through suspension
polymerization followed by the heterogeneous saponification. The effects of MMT on the polymerization rate and the saponification
rate of PVAc were studied. It was found that the rate of polymerization decreased when MMT content was increased. However,
the saponification rate of PVAc significantly increased in the presence of nanoclay particles. The XRD measurement illustrated
that the clay particles are intercalated in the polymer matrix. 相似文献
10.
11.
Fabrice Audouin Richard Nuffer Claude Mathis 《Journal of polymer science. Part A, Polymer chemistry》2004,42(14):3456-3463
Br‐terminated polystyrenes of controlled molar masses and low polydispersities prepared by atom transfer radical polymerization (ATRP) can be converted to macroradicals using an appropriate catalytic complex (CuBr/bipyridine/100 °C). The addition of this macroradicals PS° to 6–6 bonds of C60 follows a specific atom transfer radical addition mechanism that favors the grafting of even number of chains onto the fullerene core. This peculiar mechanism, resulting from the properties of C60, offers an easy synthetic route toward well‐defined di‐ and tetra‐adducts. In these adducts the disturbance of the electronic structure of the fullerene is kept at its minimum, as only one double bond needs to be opened on the C60 to add two PS chains and only two double bonds are converted to single bonds in the tetra‐adduct. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3456–3463, 2004 相似文献
12.
13.
Jun Wu Huxi Li Mitchell A. Winnik Rajeev Farwaha Jude Rademacher 《Journal of polymer science. Part A, Polymer chemistry》2004,42(19):5005-5020
We describe the synthesis and characterization of a series of poly(vinyl acetate‐co‐dibutyl maleate) [P(VAc‐DBM)] latex particles (monomer molar ratio 10.6:1). One set of samples [high‐M and M250k SDS‐P(VAc‐DBM), gel content 50% and 0%] was prepared in the presence of an anionic surfactant sodium dodecyl sulfate. The other two sets of samples [high‐M and M250k PVOH–P(VAc‐DBM)] were prepared in the presence of poly(vinyl alcohol) (PVOH). These polymers differ in gel content (50 and 0%) and the extent of PVOH grafting (30 and 15%). Polymer diffusion across cell boundaries in the latex films was monitored by fluorescence resonant energy transfer (ET) experiments. First, we examined M250k samples in the presence of grafted and post‐added PVOH. The presence of post‐added PVOH (5%) causes a small but detectable retardation on the rate of polymer diffusion, whereas the presence of grafted PVOH (degree of grafting: 15%) significantly promotes the polymer diffusion rate. For the high‐M P(VAc‐DBM), the presence of post‐added PVOH also retards the polymer diffusion. Strikingly, the presence of grafted PVOH (degree of grafting: 30%) in the high‐M PVOH‐P(VAc‐DBM) promotes the polymer diffusion to such an extent that the diffusion was complete in the freshly prepared films. Our data also suggest that under our experimental conditions, the rate of P(VAc‐DBM) diffusion increases with an increase of the degree of PVOH grafting. To confirm these results, we carried out fluorescence microscopy experiments to monitor the fate of PVOH in these latex films and found that in newly formed PVOH–P(VAc‐DBM) films, the PVOH was either uniformly distributed in the P(VAc‐DBM) matrix or the domains were too small to be resolved (i.e., < 0.5 μm). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5005–5020, 2004 相似文献
14.
Oligolysine‐Conjugated Zinc(II) Phthalocyanines as Efficient Photosensitizers for Antimicrobial Photodynamic Therapy 下载免费PDF全文
Dr. Mei‐Rong Ke Jennifer Mary Eastel Karry L. K. Ngai Yuk‐Yam Cheung Prof. Paul K. S. Chan Prof. Mamie Hui Prof. Dennis K. P. Ng Prof. Pui‐Chi Lo 《化学:亚洲杂志》2014,9(7):1868-1875
A series of zinc(II) phthalocyanines conjugated with an oligolysine chain (n=2, 4, and 8) were synthesized and characterized by using various spectroscopic methods. As shown by using UV/Vis and fluorescence spectroscopic methods, these compounds were nonaggregated in N,N‐dimethylformamide, and gave a weak fluorescence emission and high singlet oxygen quantum yield (ΦΔ=0.86–0.89) as a result of their di‐α‐substitution. They became slightly aggregated in water with 0.05 % Cremophor EL, but they could still generate singlet oxygen effectively. The antimicrobial photodynamic activities of these compounds were then examined against various bacterial strains, including the Gram‐positive methicillin‐sensitive Staphylococcus aureus ATCC 25923 and methicillin‐resistant Staphylococcus aureus ATCC BAA‐43, and the Gram‐negative Escherichia coli ATCC 35218 and Pseudomonas aeruginosa ATCC 27853. Generally, the dyes were much more potent toward the Gram‐positive bacteria. Only 15 to 90 nM of these photosensitizers was required to induce a 4 log reduction in the cell viability of the strains. For Escherichia coli, the photocytotoxicity increased with the length of the oligolysine chain. The octalysine derivative showed the highest potency with a 4 log reduction concentration of 0.8 μM . Pseudomonas aeruginosa was most resistant to the photodynamic treatment. The potency of the tetralysine derivative toward a series of clinical strains of Staphylococcus aureus was also examined and found to be comparable with that toward the nonclinical counterparts. Moreover, the efficacy of these compounds in photodynamic inactivation of viruses was also examined. They were highly photocytotoxic against the enveloped viruses influenza A virus (H1N1) and herpes simplex virus type 1 (HSV1), but exhibited no significant cytotoxicity against the nonenveloped viruses adenovirus type 3 (Ad3) or coxsackievirus (Cox B1). The octalysine derivative also showed the highest potency with an IC50 value of 0.05 nM for the two enveloped viruses. 相似文献
15.
Itaru Natori Shizue Natori 《Journal of polymer science. Part A, Polymer chemistry》2008,46(10):3282-3293
The grafting reaction of poly(1,3‐cyclohexadienyl)lithium onto fullerene‐C60 (C60) was strongly affected by the nucleophilicity of poly(1,3‐cyclohexadiene) (PCHD) carbanions and the polymer chain microstructure, and progressed via step‐by‐step reactions. A star‐shaped PCHD, having a maximum of four arms, was obtained from poly(1,3‐cyclohexadienyl)lithium composed of all 1,4‐cyclohexadiene (1,4‐CHD) units. The rate of the grafting reaction was accelerated by the addition of amine. The grafting density of PCHD arms onto C60 decreased with an increase in the molar ratio of 1,2‐cyclohexadiene (1,2‐CHD) units. The electron‐transfer reaction from PCHD carbanions to C60 did not occur in either a nonpolar solvent or a polar solvent. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3282–3293, 2008. 相似文献
16.
Guoshan Song Yannan Lin Zhongcheng Zhu Heying Zheng Jinping Qiao Changcheng He Huiliang Wang 《Macromolecular rapid communications》2015,36(3):278-285
Discovering fluorescence of existing compounds, which are generally regarded as non‐fluorescent, is of important academic and technical significance. This article reports the fluorescence of common compounds containing pyrrolidone ring(s) and their oxidized hydrolyzates. Poly(N‐vinylpyrrolidone) (PVP), polymerized from a very weak fluorescent monomer N‐vinyl‐2‐pyrrolidone (NVP), exhibits strong intrinsic fluorescence. Moreover, the fluorescence of its “hydrolyzate” is dramatically enhanced by about 1000 times. The “hydrolyzate” of N‐methyl‐pyrrolidone (NMP) also exhibits significantly enhanced fluorescence. By studying the chemical structures and fluorescence of the hydrolyzates, the enhanced fluorescence is attributed to the formation of secondary amine oxide. The much stronger fluorescence of the polymers compared to the corresponding small molecular compounds is ascribed to the “aggregation‐induced emission” (AIE) effect of the luminophores. PVP and its oxidized hydrolyzate also show some phenomena different to the common AIE effect. The fluorescence of PVP and its oxidized hydrolyzate shows stimuli response to metal ions and pH values. This study introduces novel fluorescent materials for various potential applications.
17.
18.
Low‐cost, responsive poly(N‐isopropylacrylamide)/polystyrene composite films were prepared by a facile electrospinning technique. The surface structures and wettabilities of the composite films are tunable by simply controlling the concentration of polymer. With a proper proportion of each polymer, the wettability of the surface can be switched between superhydrophilicity and superhydrophobicity when the temperature is changed from 20 °C to 50 °C. The combination of a stimuli‐responsive polymer with micro/nanostructures on the surface of the composite film contributes to this unique surface property.
19.
Nihal Engin Vrana Yurong Liu Garret Brian McGuinness Paul Aidan Cahill 《Macromolecular Symposia》2008,269(1):106-110
In this study, PVA/Chitosan hydrogels were fabricated by freeze/thaw cycles and further crosslinking with a KOH/Na2SO4 coagulation bath and the effect of freeze/thaw cycle number on cell behaviour was evaluated. The surface of the hydrogels were further modified with Collagen type I adsorption and seeded with bovine aortic vascular smooth muscle and endothelial cells. Increasing the number of freeze/thaw cycles resulted in a marked change in surface morphology, hydrophilicity and protein adsorption. Collagen coating caused an increase in initial attachment and proliferation. We concluded that hydrogels that have undergone 3 freeze/thaw cycles were optimum for cell attachment both in the presence and the absence of coating. 相似文献
20.
Claude Billaud Mohamed Sarakha Michle Bolte 《Journal of polymer science. Part A, Polymer chemistry》2000,38(21):3997-4005
N‐Vinylpyrrolidone polymerization photoinitiated at 365 and 546 nm by azidopentaammine cobalt(III) {[Co(NH3)5N3]2+} was investigated at room temperature in an argon atmosphere. By excitation into the ligand to metal charge transfer (LMCT), the cobalt complex showed an efficient photoredox process leading to the formation of a cobalt(II) and an azide radical (N, Φphotoredox = 0.24). The same process was found to occur by excitation into the ligand field band with a low but not negligible quantum yield (Φphotoredox = 0.016). Two different domains were clearly present when the plot of the rate of polymerization as a function of the cobalt(III) complex was studied; for [Co(III)] < 2.0 × 10−4 M, the termination step mainly involved a mutual annihilation of growing radicals whereas an oxidative termination was present in the range of 2.0 × 10−4 M < [Co(III)] < 1.0 × 10−3 M. Within the former domain the rate of polymerization (Rp ) varied with the first power of the monomer concentration and with the square root of the absorbed light intensity while for the latter domain the Rp was proportional to the monomer concentration and absorbed light intensity. Further investigations using the viscosity‐average molecular weight data allowed us to corroborate the proposed polymerization mechanism. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3997–4005, 2000 相似文献