首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spontaneous micelle‐to‐vesicle transition in an aqueous mixture of two surface‐active ionic liquids (SAILs), namely, 1‐butyl‐3‐methylimidazolium n‐octylsulfate ([C4mim][C8SO4]) and 1‐dodecyl‐3‐methylimidazoium chloride ([C12mim]Cl) is described. In addition to detailed structural characterization obtained by using dynamic light scattering, transmission electron microscopy (TEM), and cryogenic TEM techniques, ultrafast fluorescence resonance energy transfer (FRET) from coumarin 153 (C153) as a donor (D) to rhodamine 6G (R6G) as an acceptor (A) is also used to study micelle–vesicle transitions in the present system. Structural transitions of SAIL micelles ([C4mim][C8SO4] or [C12mim]Cl micelles) to mixed SAIL vesicles resulted in significantly increased D –A distances, and therefore, increased timescale of FRET. In [C4mim][C8SO4] micelles, FRET between C153 and R6G occurs on an ultrafast timescale of 3.3 ps, which corresponds to a D –A distance of about 15 Å. As [C4mim][C8SO4] micelles are transformed into mixed micelles upon the addition of a 0.25 molar fraction of [C12mim]Cl, the timescale of FRET increases to 300 ps, which suggests an increase in the D –A distance to 31 Å. At a 0.5 molar fraction of [C12mim]Cl, unilamellar vesicles are formed in which FRET occurs on multiple timescales of about 250 and 2100 ps, which correspond to D –A distances of 33 and 47 Å. Although in micelles and mixed micelles the obtained D –A distances are well correlated with their radius, in vesicles the obtained D –A distance is within the range of the bilayer thickness.  相似文献   

2.
The effect of compressed CO2 on the solubilization capacity of water in reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in longer chain n-alkanes was studied at different temperatures and pressures. It was found that the amount of solubilized water is increased considerably by CO2 in a suitable pressure range. The suitable CO2 pressure range in which the solubilization capacity of water could be enhanced decreased with increasing W0 (water-to-AOT molar ratio). The microenvironments in the CO2-stabilized reverse micelles were investigated by UV/Vis adsorption spectroscopy with methyl orange (MO) as probe. The mechanism by which the reverse micelles are stabilized by CO2 is discussed in detail. The main reason is likely to be that CO2 has a much smaller molecular volume than the n-alkane solvents studied in this work. Therefore, it can penetrate the interfacial film of the reverse micelles and stabilize them by increasing the rigidity of the micellar interface and thus reducing the attractive interaction between the droplets. However, if the CO2 pressure is too high, the solvent strength of the solvents is reduced markedly, and this induces phase separation in the micellar solution.  相似文献   

3.
4.
Sodium dodecyl sulfate (SDS)/dodecyl triethyl ammonium bromide (DEAB) mixed micelles (with SDS in excess) can transform to vesicles only when the temperature is higher than a critical value. In this study, we report for the first time that oligonucleotide can decrease the critical temperature to a much lower value and, hence, induce micelle‐to‐vesicle transition. The facilitation efficiency of oligonucleotide on vesicle formation is closely dependent on its size and base composition. Moreover, the SDS/DEAB/oligonucleotide vesicles are negatively charged and the hydrophobic interaction between oligonucleotide and SDS/DEAB mixed micelles is the driving force. As, so far, the report about the facilitation effect of oligonucleotide and DNA on vesicle formation is very limited, this study may provide some helpful information for the application of DNA/amphiphile system. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7491–7504, 2008  相似文献   

5.
To date, polar microenvironments in apolar solvents have been successfully used in different ways, such as separation of proteins1, enzymatic or catalytic reactions in reverse micelles2. It is obvious that investigation of new method to create polar microenvironments is of great importance to both pure and applied sciences, and it is desirable that forming and breaking the microenvironments can be easily controlled. Compressed CO2 can dissolve in many organic solvents and the solubility can …  相似文献   

6.
The micellization of amphiphilic molecules is an interesting topic from both theoretical and practical points of view. Herein we have studied the effects of compressed CO(2) on the micellization of Pluronics in water by means of fluorescence, UV/Vis spectra, and small-angle X-ray scattering. It was found that CO(2) can induce the micellization of Pluronics in water, and the micelle can return to the initial state of molecular dispersion after depressurization. Therefore, the micellization of Pluronics in water can be switched through the easy control of pressure. Different from the common micelles with hydrophobic cores, interestingly, this CO(2)-induced micelle has an amphiphilic core, in which hydrophobic and hydrophilic domains coexist. On account of the ability to dissolve both polar and nonpolar components in the micellar core, the CO(2)-induced micelles can improve the reagent compatibilities frequently encountered in various applications. In an attempt to address this advantage, this micelle was utilized as template to the one-step synthesis of Au/silica core-shell composite nanoparticles. Furthermore, the underlying mechanism for the CO(2)-induced micellization of Pluronics in water was investigated by a series of experiments.  相似文献   

7.
8.
The effect of compressed CO2 on the solubilization of bovine serum albumin (BSA) in water/sodium bis-(2-ethylhexyl) sulfosuccinate (AOT)/isooctane reverse micelles was studied by observing phase behavior and recording UV-visible spectra under different conditions. The pH values within the water cores of reverse micelles at different CO2 pressures were also determined. The solubilization capacity of the reverse micelles for the protein increased considerably as CO2 pressure increased within the low-pressure range, but decreased at higher CO2 pressures, so that the micelles eventually lost their ability to solubilize the protein. The effect of CO2 on the stability of the reverse micelles played an important role in the relationship between pressure and protein solubility. A "multicomplex" model was proposed to explain these effects. The different solublization capacities within different pressure ranges demonstrates the unique advantage of using compressed CO2 in the extraction of proteins with reverse micelles.  相似文献   

9.
Getting their feet wet : Low‐cost hydrocarbon surfactants act as fluid modifiers for supercritical carbon dioxide (scCO2). Increased terminal branching of the surfactant chains aids micelle formation (see middle picture: CO2 green), and more chains allows water to be incorporated (right, blue).

  相似文献   


10.
11.
The construction of amphiphilic polycarbonates through epoxides/CO2 coupling is a challenging aim to provide more diverse CO2‐based functional materials. In this report, we demonstrate the facile preparation of diverse and functional nanoparticles derived from a CO2‐based triblock polycarbonate system. By the judicious use of water as chain‐transfer reagent in the propylene oxide/CO2 polymerization, poly(propylene carbonate (PPC) diols are successfully produced and serve as macroinitiators in the subsequent allyl glycidyl ether/CO2 coupling reaction. The resulting ABA triblock polycarbonate can be further functionalized with various thiols by radical mediated thiol–ene click chemistry, followed by self‐assembly in deionized water to construct a versatile and functional nanostructure system. This class of amphiphilic polycarbonates could embody a powerful platform for biomedical applications.  相似文献   

12.
13.
The aggregation behavior of mixtures of the alkaline amino acid L ‐Arginine (L ‐Arg) and bis(2‐ethylhexyl)phosphoric acid (DEHPA) in water was studied in detail. At a fixed L ‐Arg concentration, a phase sequence of micellar phase (L1 phase), vesicle phase (Lαv phase), planar lamellar phase (Lαl phase), and sponge phase (L3 phase) was obtained with increasing DEHPA concentration due to changes in the packing parameter. The phase transition of the lamellar structures was determined by freeze‐fracture TEM and 2H NMR spectroscopy. Rheological measurements reflected the phase transition through significant variations of both the elastic modulus and the viscous modulus. Porous CeO2 materials were produced by utilizing the L3 phase as template, and the porous CeO2 exhibited excellent catalytic oxidation activity toward CO due to its high surface area, which provides more active sites for CO conversion.  相似文献   

14.
The formation of reverse‐vesicular structures of the polyoxometalate‐containing hybrid surfactants [nBu4N]3[MnMo6O18{(OCH2)3? CNHCO(CH2)n?2CH3}2] (Mn‐Anderson‐Cn, n=6, 16) in nonpolar medium was achieved by titrating toluene into Mn‐Anderson‐Cn/acetonitrile (MeCN) solution. Stepwise change of the solvent polarity induces self‐association of the hydrophilic Mn‐Anderson cluster on the hybrid amphiphiles. The reverse‐vesicle formation was characterized by laser light scattering and further confirmed by transmission electron microscopy techniques, and the vesicle sizes increase with increasing toluene contents. The assembly process was accelerated at an elevated temperature. The length of the alkyl tails on the hybrid surfactants has a minor effect on the vesicle sizes, because the strong attraction between the polyoxometalate clusters is more dominant in the reverse‐vesicle formation.  相似文献   

15.
The preparation of long‐term‐stable giant unilamellar vesicles (GUVs, diameter ≥1000 nm) and large vesicles (diameter ≥500 nm) by self‐assembly in THF of the crystalline‐b‐coil polyphosphazene block copolymers [N=P(OCH2CF3)2]nb‐[N=PMePh]m ( 4 a : n=30, m=20; 4 b : n=90, m=20; 4 c : n=200, m=85), which combine crystalline [N=P(OCH2CF3)2] and amorphous [N=PMePh] blocks, both of which are flexible, is reported. SEM, TEM, and wide‐angle X‐ray scattering experiments demonstrated that the stability of these GUVs is induced by crystallization of the [N=P(OCH2CF3)2] blocks at the capsule wall of the GUVS, with the [N=PMePh] blocks at the corona. Higher degrees of crystallinity of the capsule wall are found in the bigger vesicles, which suggests that the crystallinity of the [N=P(OCH2CF3)2] block facilitates the formation of large vesicles. The GUVs are responsive to strong acids (HOTf) and, after selective protonation of the [N=PMePh] block, they undergo a morphological evolution to smaller spherical micelles in which the core and corona roles have been inverted. This morphological evolution is totally reversible by neutralization with a base (NEt3), which regenerates the original GUVs. The monitoring of this process by dynamic light scattering allowed a mechanism to to be proposed for this reversible morphological evolution in which the block copolymer 4 a and its protonated form 4 a+ are intermediates. This opens a route to the design of reversibly responsive polymeric systems in organic solvents. This is the first reversibly responsive vesicle system to operate in organic media.  相似文献   

16.
Hydrophilic/CO2‐philic poly(ethylene oxide)‐b‐poly(1,1,2,2‐tetrahydroperfluorodecyl acrylate) block copolymers were synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization, iodine transfer polymerization (ITP), and atom transfer radical polymerization (ATRP) in the presence of either degenerative transfer agents or a macroinitiator based on poly(ethylene oxide). In this work, both RAFT and ATRP showed higher efficiency than ITP for the preparation of the expected copolymers. More detailed research was carried out on RAFT, and the living character of the polymerization was confirmed by an ultraviolet (UV) analysis of the ? SC(S)Ph or ? SC(S)S? C12H25 end groups in the polymer chains. The quantitative UV analysis of the copolymers indicated a number‐average molecular weight in good agreement with the value determined by 1H NMR analysis. The properties of the macromolecular surfactants were investigated through the determination of the cloud points in neat liquid and supercritical CO2 and through the formation of water‐in‐CO2 emulsions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2405–2415, 2004  相似文献   

17.
Electrolyzers combining CO2 reduction (CO2R) with organic substrate oxidation can produce fuel and chemical feedstocks with a relatively low energy requirement when compared to systems that source electrons from water oxidation. Here, we report an anodic hybrid assembly based on a (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO) electrocatalyst modified with a silatrane‐anchor ( STEMPO ), which is covalently immobilized on a mesoporous indium tin oxide (mesoITO) scaffold for efficient alcohol oxidation (AlcOx). This molecular anode was subsequently combined with a cathode consisting of a polymeric cobalt phthalocyanine on carbon nanotubes to construct a hybrid, precious‐metal‐free coupled AlcOx–CO2R electrolyzer. After three‐hour electrolysis, glycerol is selectively oxidized to glyceraldehyde with a turnover number (TON) of ≈1000 and Faradaic efficiency (FE) of 83 %. The cathode generated a stoichiometric amount of syngas with a CO:H2 ratio of 1.25±0.25 and an overall cobalt‐based TON of 894 with a FE of 82 %. This prototype device inspires the design and implementation of nonconventional strategies for coupling CO2R to less energy demanding, and value‐added, oxidative chemistry.  相似文献   

18.
Ionic liquids (ILs) with a reversible hydrophobic–hydrophilic transition were developed, and they exhibited unique phase behavior with H2O: monophase in the presence of CO2, but biphase upon removal of CO2 at room temperature and atmospheric pressure. Thus, coupling of reaction, separation, and recovery steps in sustainable chemical processes could be realized by a reversible liquid–liquid phase transition of such IL‐H2O mixtures. Spectroscopic investigations and DFT calculations showed that the mechanism behind hydrophobic–hydrophilic transition involved reversible reaction of CO2 with anion of the ILs and formation of hydrophilic ammonium salts. These unique IL‐H2O systems were successfully utilized for facile one‐step synthesis of Au porous films by bubbling CO2 under ambient conditions. The Au porous films and the ILs were then separated simultaneously from aqueous solutions by bubbling N2, and recovered ILs could be directly reused in the next process.  相似文献   

19.
A luminescent cocrystal system is reported to undergo crystal‐to‐crystal phase transformation from yellow‐emitting polymorph I to green‐emitting polymorph II, triggered by THF fuming or heating, and the green emission can recover to the initial yellow emission by grinding. The established spectroscopic and crystallographic analyses demonstrate that the phase transition occurred and benefits from the combined effect of similar molecular arrange sequence and unique alteration of intermolecular interactions from halogen/hydrogen bonds in I to π–π stacking in II. Furthermore, I and II exhibit red‐shift emission under hydrostatic pressure. The emission of I and II shows a red‐shift and recovers towards the initial emission upon acid–base fuming. This is a rare example of reversible luminescent switching of cocrystal based upon crystal‐to‐crystal phase transition, and provides an alternative strategy to develop multi‐stimuli responsive materials.  相似文献   

20.
The structure and dynamics of a catanionic vesicle are studied by means of femtosecond up‐conversion and dynamic light scattering (DLS). The catanionic vesicle is composed of dodecyl‐trimethyl‐ammonium bromide (DTAB) and sodium dodecyl sulphate (SDS). The DLS data suggest that 90 % of the vesicles have a diameter of about 400 nm, whereas the diameter of the other 10 % is about 50 nm. The dynamics in the catanionic vesicle are compared with those in pure SDS and DTAB micelles. We also study the dynamics in different regions of the micelle/vesicle by varying the excitation wavelength (λex) from 375 to 435 nm. The catanionic vesicle is found to be more heterogeneous than the SDS or DTAB micelles, and hence, the λex‐dependent variation of the solvation dynamics is more prominent in the first case. The solvation dynamics in the vesicle and the micelles display an ultraslow component (2 and 300 ps, respectively), which arises from the quasibound, confined water inside the micelle, and an ultrafast component (<0.3 ps), which is due to quasifree water at the surface/exposed region. With an increase in λex, the solvation dynamics become faster. This is manifested in a decrease in the total dynamic solvent shift and an increase in the contribution of the ultrafast component (<0.3 ps). At a long λex (435 nm), the surface (exposed region) of a micelle/vesicle is probed, where the solvation dynamics of the water molecules are faster than those in a buried location of the vesicle and the micelles. The time constant of anisotropy decay becomes longer with increasing λex, in both the catanionic vesicle and the ordinary micelles (SDS and DTAB). The slow rotational dynamics (anisotropy decay) in the polar region (at long λex) may be due to the presence of ionic head groups and counter ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号