共查询到20条相似文献,搜索用时 15 毫秒
1.
Lizhi Zhang Prof. Dr. Georg Garnweitner Prof. Dr. Igor Djerdj Dr. Markus Antonietti Prof. Dr. Markus Niederberger Prof. Dr. 《化学:亚洲杂志》2008,3(4):746-752
A general nonaqueous route for the synthesis of phase‐pure transition‐metal niobate (InNbO4, MnNb2O6, and YNbO4) nanocrystals was developed based on the one‐pot solvothermal reaction of niobium chloride and the corresponding transition‐metal acetylacetonates in benzyl alcohol at 200 °C. All samples were carefully characterized by XRD, TEM, HRTEM, and energy‐dispersive X‐ray (EDX) analysis. The crystallization mechanism of these niobate nanocrystals points to a two‐step pathway. First, metal hydroxide crystals and amorphous niobium oxide are formed. Second, metal niobate nanocrystals are generated from the intermediates by a dissolution–recrystallization mechanism. The reaction mechanisms, that is, the processes responsible for the oxygen supply for oxide formation, were found to be rather complex and involve niobium‐mediated ether elimination as the main pathway, accompanied by solvolysis of the acetylacetonate ligands and benzylation reactions. 相似文献
2.
3.
4.
5.
6.
7.
Lidia Armelao Dr. Davide Barreca Dr. Gregorio Bottaro Dr. Alberto Gasparotto Dr. Chiara Maccato Dr. Eugenio Tondello Prof. Oleg I. Lebedev Dr. Stuart Turner Gustaaf Van Tendeloo Prof. Cinzia Sada Dr. Urška Lavrenčič Štangar Prof. 《Chemphyschem》2009,10(18):3249-3259
The present work is devoted to the preparation of Ag/TiO2 nanosystems by an original synthetic strategy, based on the radio‐frequency (RF) sputtering of silver particles on titania‐based xerogels prepared by the sol–gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF‐sputtering, whose combination enables the obtainment of a tailored dispersion of Ag‐containing particles into the titania matrix. In addition, the system′s chemico‐physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 °C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X‐ray photoelectron and X‐ray excited Auger electron spectroscopies (XPS, XE‐AES), secondary ion mass spectrometry (SIMS), glancing incidence X‐ray diffraction (GIXRD), field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM), electron diffraction (ED), high‐angle annular dark field scanning TEM (HAADF–STEM), energy‐filtered TEM (EF–TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo‐dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties. 相似文献
8.
Steven J. Craythorne Kris Anderson Dr. Fabio Lorenzini Christina McCausland Emily F. Smith Peter Licence Dr. Andrew C. Marr Dr. Patricia C. Marr Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(29):7094-7100
Molecular hydrogenation catalysts have been co‐entrapped with the ionic liquid [Bmim]NTf2 inside a silica matrix by a sol–gel method. These catalytic ionogels have been compared to simple catalyst‐doped glasses, the parent homogeneous catalysts, commercial heterogeneous catalysts, and Rh‐doped mesoporous silica. The most active ionogel has been characterised by transmission electron microscopy, X‐ray photoelectron spectroscopy, and solid state NMR before and after catalysis. The ionogel catalysts were found to be remarkably active, recyclable and resistant to chemical change. 相似文献
9.
10.
Stefan Wuttke Dipl.‐Chem. Simona M. Coman Prof. Dr. Gudrun Scholz Priv.‐Doz. Dr. Holm Kirmse Dr. Alexandré Vimont Dr. Maro Daturi Prof. Dr. Sven L. M. Schroeder Dr. Erhard Kemnitz Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(36):11488-11499
Novel magnesium fluorides have been prepared by a new fluorolytic sol–gel synthesis for fluoride materials based on aqueous HF. By changing the amount of water at constant stoichiometric amount of HF, it is possible to tune the surface acidity of the resulting partly hydroxylated magnesium fluorides. These materials possess medium‐strength Lewis acid sites and, by increasing the amount of water, Brønsted acid sites as well. Magnesium hydroxyl groups normally have a basic nature and only with this new synthetic route is it possible to create Brønsted acidic magnesium hydroxyl groups. XRD, MAS NMR, TEM, thermal analysis, and elemental analysis have been applied to study the structure, composition, and thermal behaviour of the bulk materials. XPS measurements, FTIR with probe molecules, and the determination of N2/Ar adsorption–desorption isotherms have been carried out to investigate the surface properties. Furthermore, activity data have indicated that the tuning of the acidic properties makes these materials versatile catalysts for different classes of reactions, such as the synthesis of (all‐rac)‐[α]‐tocopherol through the condensation of 2,3,6‐trimethylhydroquinone (TMHQ) with isophytol (IP). 相似文献
11.
Lifen Xiao Dr. Yanqiang Zhao Jia Yin Lizhi Zhang Prof. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(37):9442-9450
Hollow ZnV2O4 microspheres with a clewlike feature were synthesized by reacting zinc nitrate hexahydrate and ammonium metavanadate in benzyl alcohol at 180 °C for the first time. GC–MS analysis revealed that the organic reactions that occurred in this study were rather different from those in benzyl alcohol based nonaqueous sol–gel systems with metal alkoxides, acetylacetonates, and acetates as the precursors. Time‐dependent experiments revealed that the growth mechanism of the clewlike ZnV2O4 hollow microspheres might involve a unique multistep pathway. First, the generation and self‐assembly of ZnO nanosheets into metastable hierarchical microspheres as well as the generation of VO2 particles took place quickly. Then, clewlike ZnV2O4 hollow spheres were gradually produced by means of a repeating reaction–dissolution (RD) process. In this process, the outside ZnO nanosheets of hierarchical microspheres would first react with neighboring vanadium ions and benzyl alcohol and also serve as the secondary nucleation sites for the subsequently formed ZnV2O4 nanocrystals. With the reaction proceeding, the interior ZnO would dissolve and then spontaneously diffuse outwards to nucleate as ZnO nanocrystals on the preformed ZnV2O4 nanowires. These renascent ZnO nanocrystals would further react with VO2 and benzyl alcohol, ultimately resulting in the final formation of a hollow spatial structure. The lithium storage ability of clewlike ZnV2O4 hollow microspheres was studied. When cycled at 50 mA g?1 in the voltage range of 0.01–3 V, this peculiarly structured ZnV2O4 electrode delivered an initial reversible capacity of 548 mAh g?1 and exhibited almost stable cycling performance to maintain a capacity of 524 mAh g?1 over 50 cycles. This attractive lithium storage performance suggests that the resulting clewlike ZnV2O4 hollow spheres are promising for lithium‐ion batteries. 相似文献
12.
Dr. Luca Gabrielli Dr. Laura Russo Dr. Ana Poveda Dr. Julian R. Jones Prof. Francesco Nicotra Dr. Jesús Jiménez‐Barbero Prof. Laura Cipolla 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(24):7856-7864
Hybrid organic–inorganic solids represent an important class of engineering materials, usually prepared by sol–gel processes by cross‐reaction between organic and inorganic precursors. The choice of the two components and control of the reaction conditions (especially pH value) allow the synthesis of hybrid materials with novel properties and functionalities. 3‐Glycidoxypropyltrimethoxysilane (GPTMS) is one of the most commonly used organic silanes for hybrid‐material fabrication. Herein, the reactivity of GPTMS in water at different pH values (pH 2–11) was deeply investigated for the first time by solution‐state multinuclear NMR spectroscopic and mass spectrometric analysis. The extent of the different and competing reactions that take place as a function of the pH value was elucidated. The NMR spectroscopic and mass spectrometric data clearly indicate that the pH value determines the kinetics of epoxide hydrolysis versus silicon condensation. Under slighly acidic conditions, the epoxy‐ring hydrolysis is kinetically more favourable than the formation of the silica network. In contrast, under basic conditions, silicon condensation is the main reaction that takes place. Full characterisation of the formed intermediates was carried out by using NMR spectroscopic and mass spectrometric analysis. These results indicate that strict control of the pH values allows tuning of the reactivity of the organic and inorganic moities, thus laying the foundations for the design and synthesis of sol–gel hybrid biomaterials with tuneable properties. 相似文献
13.
In Situ Electrodeposition of an Asymmetric Sol–Gel Membrane Based on an Octadecyltrimethoxysilane Langmuir Film 下载免费PDF全文
Maria Hitrik Prof. Ovadia Lev Prof. Daniel Mandler 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(38):12104-12113
The unique properties of Langmuir film formation were utilized in assembling a thin skin of an asymmetric membrane. An octadecyltrimethoxysilane (ODTMS) Langmuir monolayer was formed at the air–water interface and served as the substrate for growing a bulky sol–gel polymer in situ. The latter was based on the electrochemical deposition of tetramethoxysilane dissolved in the water subphase by means of horizontal touch electrochemistry. The resultant asymmetric layer that consisted of a thin hydrophobic ODTMS Langmuir film connected to a bulk hydrophilic sol–gel network was studied in situ and ex situ by using various techniques, such as cyclic voltammetry, electrochemical impedance spectroscopy (EIS), scanning electron microscopy, transmission electron microscopy (TEM), and goniometry. We found that a porous hydrophilic film grew on top of a hydrophobic layer as was evident from TEM, contact angle, and EIS analyses. The film thickness and film permeability could be controlled by changing the deposition conditions such as the potential window applied and its duration. Hence, this method offers an alternative approach for assembling asymmetric films for various applications 相似文献
14.
Two titania photocatalysts have been prepared using the sol–gel method using TiCl4 as a precursor, and two different alcohols, namely, ethanol or propanol (Et or Pr). The main aim of this work was to study the effect of the nature of the alcohol on the chemical, structural and photocatalytic properties for paracetamol photodegradation of the final solids. The TiCl4/alcohol molar ratio to obtain the corresponding alkoxides (TiEt and TiPr) was 1/10. These alkoxides were calcined at 400 °C to prepare the oxide catalysts (named as TiEt400 and TiPr400). Powder X-ray diffraction (PXRD) of the original samples showed the presence of anatase diffraction peaks in sample TiPr, while TiEt is a completely amorphous material. Contrary to commercial TiO2-P25, the PXRD diagrams of the calcined samples showed anatase as the exclusive crystalline phase in both solids. The specific surface area (SBET) of sample TiPr400 was larger than that of sample TiEt400, and both larger than that of TiO2-P25. The three solids have been tested in the photodegradation of paracetamol in aqueous solution. It has been established that the alcohol used influences the properties and catalytic activity of the final oxides. The synthesized solids exhibit a higher activity than commercial TiO2-P25, because of their structural characteristics and larger SBET. 相似文献
15.
Stimuli‐Triggered Sol–Gel Transitions of Polypeptides Derived from α‐Amino Acid N‐Carboxyanhydride (NCA) Polymerizations 下载免费PDF全文
The past decade has witnessed significantly increased interest in the development of smart polypeptide‐based organo‐ and hydrogel systems with stimuli responsiveness, especially those that exhibit sol–gel phase‐transition properties, with an anticipation of their utility in the construction of adaptive materials, sensor designs, and controlled release systems, among other applications. Such developments have been facilitated by dramatic progress in controlled polymerizations of α‐amino acid N‐carboxyanhydrides (NCAs), together with advanced orthogonal functionalization techniques, which have enabled economical and practical syntheses of well‐defined polypeptides and peptide hybrid polymeric materials. One‐dimensional stacking of polypeptides or peptide aggregations in the forms of certain ordered conformations, such as α helices and β sheets, in combination with further physical or chemical cross‐linking, result in the construction of three‐dimensional matrices of polypeptide gel systems. The macroscopic sol–gel transitions, resulting from the construction or deconstruction of gel networks and the conformational changes between secondary structures, can be triggered by external stimuli, including environmental factors, electromagnetic fields, and (bio)chemical species. Herein, the most recent advances in polypeptide gel systems are described, covering synthetic strategies, gelation mechanisms, and stimuli‐triggered sol–gel transitions, with the aim of demonstrating the relationships between chemical compositions, supramolecular structures, and responsive properties of polypeptide‐based organo‐ and hydrogels. 相似文献
16.
Rational Design of Ni Nanoparticles on N‐Rich Ultrathin Carbon Nanosheets for High‐Performance Supercapacitor Materials: Embedded‐ Versus Anchored‐Type Dispersion 下载免费PDF全文
Mei Yang Yiren Zhong Dr. Liwei Su Prof. Jinping Wei Prof. Zhen Zhou 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(17):5046-5053
Highly dispersed Ni nanoparticles (NPs) and abundant functional N‐species were integrated into ultrathin carbon nanosheets by using a facile and economical sol–gel route. Embedded‐ and anchored‐type configurations were achieved for the dispersion of Ni NPs in/on N‐rich carbon nanosheets. The anchored‐type composite exhibited outstanding pseudocapacitance of 2200 F g?1 at 5 A g?1 with unusual rate capability and extraordinary cyclic stability over 20 000 cycles with little capacitance decay. Aqueous asymmetric supercapacitors fabricated with this composite cathode demonstrated a high energy density of 51.3 Wh kg?1 at a relatively large power density of 421.6 W kg?1, along with outstanding cyclic stability. This approach opens an attractive direction for enhancing the electrochemical performances of metal‐based supercapacitors and can be generalized to design high‐performance energy‐storage devices. 相似文献
17.
Laura Contessotto Dr. Elena Ghedini Francesco Pinna Prof. Michela Signoretto Giuseppina Cerrato Dr. Valentina Crocellà Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(44):12043-12049
Pure and modified silica materials were synthesised by a sol–gel process and used as carrier for the controlled release of ibuprofen, selected as model drug. A one‐step synthesis was optimised for the preparation of various silica–drug composites by using tetraethoxysilane and 3‐aminopropyltriethoxysilane as precursors at different molar ratios. The presence of aminopropyl groups on the silica surface influences the drug‐delivery rate leading to a high degree the desorption process controlled. 相似文献
18.
Controlled Sol–Gel Transitions of a Thermoresponsive Polymer in a Photoswitchable Azobenzene Ionic Liquid as a Molecular Trigger 下载免费PDF全文
Dr. Caihong Wang Dr. Kei Hashimoto Dr. Ryota Tamate Dr. Hisashi Kokubo Prof. Dr. Masayoshi Watanabe 《Angewandte Chemie (International ed. in English)》2018,57(1):227-230
Producing ionic liquids (ILs) that function as molecular trigger for macroscopic change is a challenging issue. Photoisomerization of an azobenzene IL at the molecular level evokes a macroscopic response (light‐controlled mechanical sol–gel transitions) for ABA triblock copolymer solutions. The A endblocks, poly(2‐phenylethyl methacrylate), show a lower critical solution temperature in the IL mixture containing azobenzene, while the B midblock, poly(methyl methacrylate), is compatible with the mixture. In a concentrated polymer solution, different gelation temperatures were observed in it under dark and UV conditions. Light‐controlled sol–gel transitions were achieved by a photoresponsive solubility change of the A endblocks upon photoisomerization of the azobenzene IL. Therefore, an azobenzene IL as a molecular switch can tune the self‐assembly of a thermoresponsive polymer, leading to macroscopic light‐controlled sol–gel transitions. 相似文献
19.
20.
A sol‐gel electrode, based on 6‐(4‐nitrophenyl)‐2‐phenyl‐4,4‐dipropyl‐3,5‐diaza‐bicyclo [3,1,0] hex‐2‐ene (NPDBH) as a neutral ionophore, was successfully developed for the detection of Sr2+ in aqueous solutions. Theoretical calculations confirmed NPDBH selectivity toward strontium in comparison with some other metal ions. The electrode responds to Sr2+ ion with a sensitivity of 29.1±0.4 mV/decade over the range 8.0×10?7–1.0×10?1 M. Selectivity coefficients determined by matched potential method (MPM) indicate high selectivity for strontium ions. The electrode has a fast response time of 11 s and a working pH range of 3.0–10.0. The sol‐gel electrode shows detection limit of 7.5×10?8 M. 相似文献