首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper is concerned with the theoretical treatment of the steady-state thermoelastic problem of a functionally graded cylindrical panel due to nonuniform heat supply in the circumferential direction. The thermal and thermoelastic constants of the cylindrical panel are expressed as power functions of the radial coordinate. We obtain the exact solution for the two-dimensional temperature change in a steady state, and thermal stresses of a simple supported cylindrical panel under the state of plane strain. Some numerical results are shown in figures and tables. Furthermore, the influence of the nonhomogeneity of the material, the radius ratio and the span angle upon the temperature change, displacements and stresses is investigated.  相似文献   

2.
Static and transient responses of a thin cylindrical panel constrained from motion along its straight edges and simply supported along its curved edges are treated analytically. Independent of modulus, and for a range of geometric parameters, static deformation along the panel’s circumference from a uniform radial pressure exhibits an indentation. This indentation does not appear in transient response of the panel from an impulse of short duration. Extensional boundary constraints strongly affect peak stress in static and transient response.  相似文献   

3.
Based on the 3D thermoelasticity theory, the thermoelastic analysis of laminated cylindrical panels with finite length and functionally graded (FG) layers subjected to three-dimensional (3D) thermal loading are presented. The material properties are assumed to be temperature-dependent and graded in the thickness direction. The variations of the field variables across the panel thickness are accurately modeled by using a layerwise differential quadrature (DQ) approach. After validating the approach, as an important application, two common types of FG sandwich cylindrical panels, namely, the sandwich panels with FG face sheets and homogeneous core and the sandwich panels with homogeneous face sheets and FG core are analyzed. The effect of micromechanical modeling of the material properties on the thermoelastic behavior of the panels is studied by comparing the results obtained using the rule of mixture and Mori–Tanaka scheme. The comparison studies reveal that the difference between the results of the two micromechanical models is very small and can be neglected. Then, the effects of different geometrical parameters, material graded index and also the temperature dependence of the material properties on the thermoelastic behavior of the FG sandwich cylindrical panels are carried out.  相似文献   

4.
The free flexural vibration of a hung clamped-free cylindrical shell partially submerged in a fluid is investigated. The fluid is assumed to be inviscid and irrotational. The cylindrical shell is modelled by using the Rayleigh-Ritz method based on Sanders’ shell theory. The kinetic energy of the fluid is derived by solving the boundary-value problem related to the fluid motion. The natural vibration characteristics of the partially submerged cylindrical shell are discussed with respect to the added virtual mass approach. In this study, the nondimensionalized added virtual mass incremental factor for the partially submerged finite shell is derived. This factor can be readily used to estimate the change in the natural frequency of the shell due to the presence of a fluid.  相似文献   

5.
This paper presents the problem of thermoelastic interactions in an elastic infinite medium with cylindrical cavity at an elevated temperature field arising out of a ramp-type heating and loading bounding surface of the cavity, and the surface is assumed initially quiescent. The governing equations are taken in a unified system from which the field equations for coupled thermoelasticity as well as for generalized thermoelasticity can be easily obtained as particular cases. Due attention has been paid to the finite time of rise of temperature, stress, displacement, and strain. The problem has been solved analytically using a direct approach. The derived analytical expressions have been computed for a specific situation. Numerical results for the temperature distribution, thermal stress, displacement, and strain are represented graphically. A comparison is made with the results predicted by the three theories.  相似文献   

6.
The paper studies the stress-strain state of a deep cylindrical panel weakened by a hole and subjected to a tensile load at the outer boundary. A variational difference method is used. A numerical analysis is carried out for an orthotropic panel with low shear stiffness __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 5, pp. 73–78, May 2006.  相似文献   

7.
An approximate analysis for free vibration of a laminated curved panel (shell) with four edges simply supported (SS2), is presented in this paper. The transverse shear deformation is considered by using a higher-order shear deformation theory. For solving the highly coupled partial differential governing equations and associated boundary conditions, a set of solution functions in the form of double trigonometric Fourier series, which are required to satisfy the geometry part of the considered boundary conditions, is assumed in advance. By applying the Galerkin procedure both to the governing equations and to the natural boundary conditions not satisfied by the assumed solution functions, an approximate solution, capable of providing a reliable prediction for the global response of the panel, is obtained. Numerical results of antisymmetric angle-ply as well as symmetric cross-ply and angle-ply laminated curved panels are presented and discussed.  相似文献   

8.
The nonlinear wave equation is solved analytically in cylindrical coordinates using the third-order approximation of the Hankel function. The second-order and third-order solutions are compared. The evolution of the initial wave profile is simulated numerically for different initial frequencies __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 4, pp. 36–45, April 2007.  相似文献   

9.
热环境下壁板非线性颤振分析   总被引:3,自引:1,他引:2  
基于一阶活塞气动力理论,采用Von Karman大变形应变-位移关系建立了无限展长壁板热环境下颤振方程,采用伽辽金方法对方程进行离散处理.取温度为分叉参数,研究壁板颤振时的分叉及混沌等复杂动力学特性.结果表明:温度载荷降低了系统的颤振临界动压,改变了颤振特性.在整个分岔参数范围内,系统呈现出较为复杂的变化,包括衰减振动、极限环振动、拟周期振动和混沌型振动.当考虑材料热效应时,系统的颤振动压将进一步降低,其响应也表现出更为丰富的非线性动态力学行为.  相似文献   

10.
In this paper, the large deflection theory is adopted to analyse the geometrical nonlinear stability of a sandwich shallow cylindrical panel with orthotropic surfaces. The critical point is determined and the postbuckling behaviour of the panel is studied.  相似文献   

11.
The purpose of this research is to study the effect of voids on the surface wave propagation in a layer of a transversely isotropic thermoelastic material with voids lying over an isotropic elastic half-space. The frequency equation is derived after developing a mathematical model for welded and smooth contact boundary conditions. The dispersion curves giving the phase velocity and attenuation coefficient via wave number are plotted graphically to depict the effects of voids and anisotropy for welded contact boundary conditions. The specific loss and amplitudes of the volume fraction field, the normal stress, and the temperature change for welded contact are obtained and shown graphically for a particular model to depict the voids and anisotropy effects. Some special cases are also deduced from the present investigation.  相似文献   

12.
Nonlinear torsional waves propagating along an infinite isotropic cylinder are considered. The hyperelasticity of the cylinder is described by the Murnaghan potential. An approximate analytical solution of the problem is obtained. The evolution of the initial waveprofile in cylinders made of composite materials reinforced with microscale particles is simulated numerically. It is shown that the approximation used to describe the variation in the amplitude inward the cylinder is quite accurate. Three-dimensional plots of evolution are presented __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 3, pp. 75–85, March 2008.  相似文献   

13.
Vibrations and the damping behaviour of thin constrained composite plates with double piezoelectric layers are analytically explored by using Fourier transformation and classical laminated plate theory. Electric potential equations in the double piezoelectric layers are solved with respect to closed and open circuit boundary conditions, an exterior dielectric slab and active control. The natural frequencies and loss factors of the constrained smart composite plates with passive control methods are not notably changed in comparison with those of the constrained composite plates without piezoelectric effects since vibrational energy does not efficiently convert to electrical energy. The loss factors of the composite plates with active constrained damping increase and the natural frequencies have significant variations as the proportional derivative gains increase. Transverse displacement power spectra of the piezoelectric composite plates with active control are compared with those of the piezoelectric composite plates with passive control showing that active control has the best suppression performance of vibrations for the constrained laminated plates with double piezoelectric layers. Radial power spectral density, phase angles and cylindrical-wave power spectral density are calculated. Interesting patterns of wave propagation are explained when plane wave expansion is used to obtain Bessel cylindrical waves.  相似文献   

14.
A theoretical analysis of the Dean problem in heterogenous porous media is presented for the specific case of monotonic permeability variation in the vertical direction. The solutions are presented in terms of the curvature ratio η which is shown to affect the flow patterns. No multiple vortex solutions were noted for all values of the curvature ratio η.  相似文献   

15.
This paper investigates the influences of higher order viscoelasticity and the inhomogeneities of the transversely isotropic elastic parameters on the disturbances in an infinite medium, caused by the presence of a transient radial force or twist on the surface of a cylindrical hole with circular cross section. Following Voigt's model for higher order viscoelasticity, the nonvanishing stress components valid for a transversely isotropic and higher order viscoelastic solid medium have been deduced in terms of radial displacement component. Considering the power law variation of elastic and viscoelastic parameters, the stress equation of motion has been developed. Solving this equation under suitable boundary conditions, due to transient forces and twists, radial displacement and relevant stress components have been determined in terms of modified Bessel functions. The problem for the presence of transient radial force has been numerically analysed. Modulations of displacement and stresses due to different order of viscoelasticity and inhomogeneity have been graphically depicted. The numerical study of the disturbance caused by the presence of twist on the surface may be similarly done but is not pursued in this paper.  相似文献   

16.
The boundary layer flow of a viscoelastic fluid of the second-grade type over a rigid continuous plate moving through an otherwise quiescent fluid with constant velocity U is studied. Assuming the flow to be laminar and two-dimensional, local similarity solution is found with fluid's elasticity and plate's withdrawal speed as the main variables. Results are presented for velocity profiles, boundary layer thickness, wall skin friction coefficient and fluid entrainment in terms of the local Deborah number. A marked formation of boundary layer is predicted, even at low Reynolds numbers, provided the Deborah number is sufficiently large. The boundary layer thickness and the wall skin friction coefficient are found to scale with fluid's elasticity—both decreasing the higher the fluid's elasticity. The amount of fluid entrained is also predicted to decrease whenever a fluid exhibits elastic behavior.  相似文献   

17.
The free flexural vibration of a finite cylindrical shell in contact with external fluid is investigated. The fluid is assumed to be inviscid and irrotational. The cylindrical shell is modeled by using the Rayleigh–Ritz method based on the Donnell–Mushtari shell theory. The fluid is modeled based on the baffled shell model, which is applied to fluid–structure interaction problems. The kinetic energy of the fluid is derived by solving the boundary-value problem. The natural vibration characteristics of the submerged cylindrical shell are discussed with respect to the added virtual mass approach. In this study, the nondimensionalized added virtual mass incremental factor for the submerged finite shell is derived. This factor can be readily used to estimate the change in the natural frequency of the shell due to the presence of the external fluid. Numerical results showed the efficacy of the proposed method, and comparison with previous results showed the validity of the theoretical results.  相似文献   

18.
Zhang  Yue  Sun  Wei  Yang  Jian  Han  Qingkai 《Nonlinear dynamics》2017,89(4):2879-2887
Nonlinear Dynamics - A robust nonlinear observer for a class of nonlinear time-delay systems is introduced. The generalized sector constraint is employed to deal with many commonly encountered...  相似文献   

19.
In this work hydrodynamics of multicomponent ideal gas mixtures have been studied. Starting from the kinetic equations, the Eulerian approach is used to derive a new set of conservation equations for the multicomponent system where each component may have different velocity and kinetic temperature. The equations are based on the Grad's method of moment derived from the kinetic model in a relaxation time approximation (RTA). Based on this model which contains separate equation sets for each component of the system, a computer code has been developed for numerical computation of compressible flows of binary gas mixture in generalized curvilinear boundary conforming coordinates. Since these equations are similar to the Navier-Stokes equations for the single fluid systems, the same numerical methods are applied to these new equations. The Roe's numerical scheme is used to discretize the convective terms of governing fluid flow equations. The prepared algorithm and the computer code are capable of computing and presenting flow fields of each component of the system separately as well as the average flow field of the multicomponent gas system as a whole. Comparison of the present code results with those of a more common algorithm based on the mixture theory in a supersonic converging-diverging nozzle provides the validation of the present formulation. Afterwards, a more involved nozzle cooling problem with a binary ideal gas (helium-xenon) is chosen to compare the present results with those of the ordinary mixture theory. The present model provides the details of the flow fields of each component separately which is not available otherwise. It is also shown that the separate fluids treatment, such as the present study, is crucial when considering time scales on the order of (or shorter than) the intercollisions relaxation times.  相似文献   

20.
Summary An elasticity solution has been obtained for a long, thick transversely isotropic circular cylindrical shell subjected to distributed pinch load using a set of three displacement functions. Numerical results are presented for different materials and thickness to mean radius ratios. The results obtained from this analysis have been compared with classical and first-order shear deformation shell theories of Flugge, Sanders, Love and Donnell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号