首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to combat a variety of pests, pesticides are widely used in fruits. Several extraction procedures (liquid extraction, single drop microextraction, microwave-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, solid-phase extraction, solid-phase microextraction, matrix solid-phase dispersion, and stir bar sorptive extraction) have been reported to determine pesticide residues in fruits and fruit juices. The significant change in recent years is the introduction of the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) methods in these matrices analysis. A combination of techniques reported the use of new extraction methods and chromatography to provide better quantitative recoveries at low levels. The use of mass spectrometric detectors in combination with liquid and gas chromatography has played a vital role to solve many problems related to food safety. The main attention in this review is on the achievements that have been possible because of the progress in extraction methods and the latest advances and novelties in mass spectrometry, and how these progresses have influenced the best control of food, allowing for an increase in the food safety and quality standards.  相似文献   

2.
Two multiresidue analytical methods for the simultaneous determination of organophosphorus and organochlorine pesticides in human urine and serum samples are described. The first approach is based on liquid–liquid microextraction with dichloromethane, and the second uses solid-phase extraction with C18. In both methods, the extracts are analyzed by capillary gas chromatography using nitrogen-phosphorus detection (NPD) and electron-capture detection (ECD). Limits of detection of the overall procedure of analysis are at the low ng mL–1 level. Stability experiments have been performed with spiked urine and serum samples stored at 4?°C for 1 month. Finally, the solid-phase extraction procedure was applied to real-world samples. Quantification was performed by NPD or ECD, and peak identity was confirmed by use of mass-selective detection (MSD).  相似文献   

3.
Two multiresidue analytical methods for the simultaneous determination of organophosphorus and organochlorine pesticides in human urine and serum samples are described. The first approach is based on liquid-liquid microextraction with dichloromethane, and the second uses solid-phase extraction with C18. In both methods, the extracts are analyzed by capillary gas chromatography using nitrogen-phosphorus detection (NPD) and electron-capture detection (ECD). Limits of detection of the overall procedure of analysis are at the low ng mL(-1) level. Stability experiments have been performed with spiked urine and serum samples stored at 4 degrees C for 1 month. Finally, the solid-phase extraction procedure was applied to real-world samples. Quantification was performed by NPD or ECD, and peak identity was confirmed by use of mass-selective detection (MSD).  相似文献   

4.
Headspace microextraction procedures such as solid-phase microextraction (SPME) and single drop microextraction (SDME) or liquid-phase microextraction (LPME) are increasingly used for the extraction of environmental organic pollutants from a variety of aqueous, viscous, semisolid and solid environmental and biological matrices. In this article, recent analytical applications of these methodologies when used as an isolation and trace enrichment step prior to the analysis of organic pollutants (pesticides, polycyclic aromatic hydrocarbons, polychlorinated compounds, organotin compounds, phenolic derivatives, aromatic amines, phthalates, etc.) by gas and liquid chromatography are reviewed. The applicability and inherent limitations of headspace microextraction are also discussed. The future direction of research in this field and general trends toward commercial applications are considered.  相似文献   

5.
Liquid-liquid extraction or solid-phase extraction followed by gas chromatography (GC) or high-performance liquid chromatography are traditional herbicide residue determination methods for environmental samples. Solid-phase microextraction (SPME) is a solventless, fast, and sensitive alternative herbicide residue extraction method that can be applied to numerous environmental matrices. The objective of this paper was to review SPME literature regarding extraction theory, extraction modes, fiber types, and method optimization in conjunction with present and future SPME applications for herbicide determination in environmental samples.  相似文献   

6.
A solid-phase microextraction (SPME) procedure using two commercial fibers coupled with high-performance liquid chromatography (HPLC) is presented for the extraction and determination of organochlorine pesticides in water samples. We have evaluated the extraction efficiency of this kind of compound using two different fibers: 60-μm polydimethylsiloxane–divinylbenzene (PDMS-DVB) and Carbowax/TPR-100 (CW/TPR). Parameters involved in the extraction and desorption procedures (e.g. extraction time, ionic strength, extraction temperature, desorption and soaking time) were studied and optimized to achieve the maximum efficiency. Results indicate that both PDMS-DVB and CW/TPR fibers are suitable for the extraction of this type of compound, and a simple calibration curve method based on simple aqueous standards can be used. All the correlation coefficients were better than 0.9950, and the RSDs ranged from 7% to 13% for 60-μm PDMS-DVB fiber and from 3% to 10% for CW/TPR fiber. Optimized procedures were applied to the determination of a mixture of six organochlorine pesticides in environmental liquid samples (sea, sewage and ground waters), employing HPLC with UV-diode array detector.  相似文献   

7.
《Analytical letters》2012,45(10):1604-1618
A sensitive and simple procedure based on the dispersive solid phase extraction with hydrophobic n-octyl-modified magnetic iron oxide nanoparticles as the sorbent was developed for the determination of ethoprophos, fenchlorphos, parathion methyl, chlorpyrifos, prothiofos, and azinphos methyl in environmental water samples. Dispersive liquid–liquid microextraction was coupled with dispersive solid-phase microextraction to enhance the dispersibility of the selected sorbent and extraction efficiency. The organophosphorus pesticides were detected using gas chromatography with a flame photometric detector. Under optimized conditions, this method achieved low method detection limit (0.02–0.10 microgram per liter), wide linearity (0.5–800 microgram per liter), high enrichment factors (122–143), good correlation coefficients (r = 0.9975–0.9997), and good repeatability (0.2–7.1 percent). This method was also successfully applied to analyze drinking water and surface water with good extraction efficiency (≥82 percent) and high degree of precision (≤5 percent). The results also indicated that the dispersibility of hydrophobic magnetic nanoparticles was enhanced with liquid–liquid microextraction without chemical modification of the magnetic iron oxide nanoparticles.  相似文献   

8.
张仟春  肖小华  李攻科 《色谱》2014,32(9):975-980
杂环胺是畜禽、鱼肉等食品在高温烹饪过程中生成的一类致癌、致突变化合物,高效、高选择性的样品前处理方法和高灵敏的分析方法是食品中痕量杂环胺分析检测的关键。本文综述了近年来溶剂萃取、固相萃取和固相微萃取等样品前处理方法,以及液相色谱、液相色谱-质谱等分析方法在食品中痕量杂环胺检测中的应用,结合现有研究对其发展趋势进行了展望。共引用文献51篇。  相似文献   

9.
Homogeneous ionic liquid microextraction was developed for the simultaneceus extraction of dimethomorph, mefenacet, isoprothiolane and oxadiazon from soil. 1-Butyl-3-methylimidazolium tetrafluoroborate was used as extraction solvent, and ammonium hexafluorophosphate was used as ion-pairing agent. High-performance liquid chromatography(HPLC) was employed for separation and determination of the analytes. The calibration curves show good linear relationship(r>0.9988). The recoveries are between 74.2% and 97.9% with relative standard deviations(RSDs) lower than 5.97%. The present method is free of volatile organic solvents, and expenditures of sample, extraction time and solvent are lower, compared with ultrasonic and Soxhlet extraction. There was no obvious diffe- rence in the extraction recoveries of pesticides obtained by the three extraction methods.  相似文献   

10.
Pharmaceuticals have become major targets in environmental chemistry due to their presence in aquatic environments (following incomplete removal in wastewater treatment or point-source contaminations), threat to drinking water sources and concern about their possible effects to wildlife and humans. Recently several methods have been developed for the determination of drugs and their metabolites in the lower nanogram per litre range, most of them using solid-phase extraction (SPE) or solid-phase microextraction (SPME), derivatisation and finally gas chromatography mass spectrometry (GC-MS), gas chromatography tandem mass spectrometry (GC-MS/MS) and liquid chromatography electrospray tandem mass spectrometry (LC-ES/MS/MS). Due to the elevated polarity of non-steroidal anti-inflamatory drugs (NSAIDs), analytical techniques based on either liquid chromatography coupled to mass spectrometry (LC-MS) and gas chromatography coupled to mass spectrometry (GC-MS) after a previous derivatisation step are essential. The most advanced aspects of current GC-MS, GC-MS/MS and LC-MS/MS methodologies for NSAID analysis are presented.  相似文献   

11.
《Analytical letters》2012,45(4):654-674
Jujube extract has a unique flavor that has been used as a common fragrance due to the volatile compounds. In this study, the volatiles of jujube extract were isolated by liquid–liquid extraction, simultaneous distillation extraction, ultrasound-assisted solvent extraction, and headspace solid-phase microextraction, and analyzed by gas chromatography–mass spectrometry. Altogether 92 compounds were identified by the four methods, of which 53 components were identified for the first time; however, only 21 compounds were identified by all these methods. The performance characteristics of the four pretreatment techniques were compared by principal component analysis which showed that the volatile compounds obtained by liquid–liquid extraction and ultrasound-assisted solvent extraction were similar both in categories and in content; whereas, the volatiles extracted by simultaneous distillation extraction, ultrasound-assisted solvent extraction, and headspace solid-phase microextraction greatly varied. The results indicated that a multi-pretreatment technique should be adopted in order to obtain the most complete information about the volatile compounds in jujube extract. The ultrasound-assisted solvent extraction method exhibited excellent repeatability and recoveries, and was very suitable for quantitative analysis. Although the recoveries and reproducibility of headspace solid-phase microextraction were inferior to the other methods, it was more sensitive than other methods.  相似文献   

12.
A method for determining triazine herbicides in soil samples that combines microwave-assisted extraction with solid-phase microextraction is described. Water containing 1% methanol was employed as extractant. The parameters of solid-phase microextraction and microwave-assisted extraction were investigated. In solid-phase microextraction, particular attention was paid to the negative effect of salt on fiber stability. Our experiments showed that this effect could be effectively reduced by simply washing the fiber with deionized water. The selected triazines could be efficiently extracted by the aqueous extractant at 105 degrees C for 3 min, with 80% output of maximum power (1,200 W). The extraction procedure provided good precision (<7%) and recoveries (76.1-87.2%). The limits of detection were in the range 2-4 microg/kg. Compared with conventional liquid extraction, microwave-assisted extraction-solid-phase microextraction was more efficient, accurate and faster, and used a very small amount of organic solvent (only 250 microL methanol). The extraction of aged spiked soil samples indicated that, although the recoveries were lower than those of freshly spiked samples, they were nevertheless satisfactory for the quantitative analysis of real-world samples.  相似文献   

13.
An overview is presented of methods currently in use to combine the preparation of aqueous samples on-line with capillary gas chromatography. Two approaches can be distinguished: heartcut-orientated reversed-phase liquid chromatography-gas chromatography (GC) and analyte-isolation-orientated analyte extraction-GC. These approaches either use techniques in which water is directly introduced onto the GC column, or an indirect approach in which water is eliminated, i.e., by solid-phase extraction, solid-phase microextraction or liquid-liquid extraction, prior to introduction of the analytes onto the GC column. The latter type of approach is much more successful and user friendly, and many applications have been reported.  相似文献   

14.
A novel extraction procedure coupled with gas chromatography-mass spectrometric detection for quantification of organochlorine pesticides (OCPs) in water is described. Amphiphilic polyhydroxylated polyparaphenylene (PH-PPP) was synthesized and coated on the surfaces of a porous polypropylene hollow fiber membrane (HFM). Due to the high porosity of the HFM, maximum active surface area to achieve high extraction efficiency is expected. The polymer-coated HFM was used for the extraction of 15 OCPs from water. The extraction efficiency was compared with emerging and established methods such as liquid-phase microextraction (LPME), solid-phase microextraction (SPME) and stir bar sorptive extraction (SBSE) techniques. We term the current procedure as polymer-coated hollow fiber microextraction (PC-HFME). PC-HFME showed good selectivity and sensitivity. Detection limits for OCPs were in the range of 0.001-0.008 microg l(-1). The sensitivity and selectivity of the coated HFM could be adjusted by changing the characteristics of the coated PH-PPP film.  相似文献   

15.
The monitoring of organochlorine pesticides has raised a great concern in the last years due to their toxicity (some of them are carcinogenic and endocrine disruptor compounds) and persistence. European Directive 2008/105/EC establishes very restrictive levels for organochlorine pesticides in surface waters. Therefore, simple, fast, highly sensitive and low cost analytical methods are required to detect and quantify these pollutants in water. In the present work, four procedures for extraction and determination are proposed and compared for the analysis of 28 organochlorine pesticides in tap, surface and sea waters. The suitability of each method of analysis was evaluated for each kind of water. The extraction methods proposed were: two solid-phase extraction methods using C18 laminar disk and Oasis HLB cartridges, a solid-phase microextraction procedure using a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre, and a micro liquid–liquid extraction procedure using ethyl acetate as solvent. Determination of pesticides was performed by large volume on-column injector-gas chromatography-electron capture detection (LVOCI-GC-ECD), splitless-GC-ECD and GC-MS (mass spectrometry). All methods present a good sensitivity with method detection limits lower than 10?ng?L?1, good accuracy with recoveries between 75 and 120% (with some exceptions) and good precision (relative standard deviations <15%), according to the Commission Decision 2002/657/EC criteria. The advantages and disadvantages of each method are discussed in terms of the green chemistry principles, the figures of merit and the matrix effect. This work tries to be a useful guidance for routine and control analysis laboratories.  相似文献   

16.
A demanding task in pesticide residue analysis is yet the development of multi-residue methods for the determination of pesticides in vegetables with relatively high fat content (i.e. edible oils and fatty vegetables). The separation of pesticides and other chemical contaminants from high-fat food samples prior to subsequent steps in the analytical process is yet a challenging issue to which much effort in method development has being applied. This review addresses the main sample treatment methodologies for pesticide residue analysis in fatty vegetable matrices. Even with the advent of advanced hyphenated techniques based on mass spectrometry these complex fatty matrices usually require extensive sample extraction and purification. Current methods involve the use of one or the combination of some of the following techniques for both the sample extraction and clean-up steps: liquid-liquid partitioning, solid-phase extraction (SPE), gel-permeation chromatography (GPC), matrix solid-phase dispersion (MSPD), etc. An overview of methods developed for these contaminants in fatty vegetables matrices is presented. Sample extraction and purification techniques are discussed and their most recent applications are highlighted. This review emphasizes that sample preparation is a critical step, but also the determination method is, and cannot be treated separately from sample treatment. In recent years, the appearance and use of new, more polar pesticides has fostered the development of liquid chromatography/mass spectrometry (LC-MS) besides gas chromatography. The main features of LC-MS for the analysis of multi-class pesticides in fatty vegetable samples will be also underlined, with an emphasis on the multi-class, multi-residue strategy and the difficulties associated.  相似文献   

17.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

18.
An ionic liquid mediated sol-gel sorbents for hollow fiber solid-phase microextraction (HF-SPME) was developed for extraction of the pesticides: diazinon, fenitrothion, malathion, fenvalerate, phosalone and tridemorph from human hair and water samples. The analytes were subsequently analyzed with high performance liquid chromatography and diode array detection (HPLC-DAD). Preliminary experiments were carried out in order to study experimental conditions for pesticides' extraction from spiked hair and water samples with HF-SPME using hollow fiber-supported ionic liquid mediated sol-gel sorbent. The sol-gel nanocomposites were reinforced with nanoparticles such as carboxylic functionalized multi-walled carbon nanotubes (COOH-MWCNTs), amino functionalized multi-walled carbon nanotubes (NH(2)-MWCNTs), nano SiO(2), nano TiO(2) and nano MgO comparatively to promote extraction efficiency. In this device, the innovative solid sorbents were developed by the sol-gel method via the reaction of tetraethylorthosilicate (TEOS) with 2-amino-2-hydroxymethyl-propane-1,3-diol (TRIS). In the basic condition (pH 10-11), the gel growth process in the presence of ionic liquid and nanoparticles was initiated. Then, the sol was injected into a polypropylene hollow fiber segment for in situ gelation process. Parameters affecting the efficiency of HF-SPME were thoroughly investigated. Linearity was observed over a range of 0.01-25,000 ng/mL with detection limits between 0.004 and 0.095 ng/mL for the pesticides in the aqueous matrices and 0.003-0.080 ng/mL in the hair matrices. The relative recoveries in the real samples ranged from 82.0% to 94.0% for the pesticides store seller's hair and the work researchers' hair. Results are showing the great possibilities of HF-SPME-HPLC-PDA for analysis of pesticides in biological and environmental samples.  相似文献   

19.
The feasibility of different extraction procedures was tested and compared for the determination of 12 organophosphorus and carbamates insecticides in honey samples. In this sense, once the samples were pre-treated - essentially dissolved in hot water by stirring - and before they could be analyzed by liquid chromatography-ion trap-second stage mass spectrometry (LC-MS(2)), four different approaches were studied for the extraction step: QuEChERS, solid-phase extraction (SPE), pressurized liquid extraction (PLE) and solid-phase microextraction (SPME). The main aim of this work was to maximise the sensitivity of pesticides and to minimise the presence of interfering compounds in the extract. All pesticides were linear in the range from CC(β) to 1000× CC(β) for the four extraction methods (three orders of magnitude). Detection capabilities (CC(β)) were 0.024-1.155 mg kg(-1) with QuEChERS, 0.010-0.646 mg kg(-1) with SPE, 0.007-0.595 mg kg(-1) with PLE, and 0.001-0.060 mg kg(-1) with SPME. All the target compounds could be recovered by any of the methods, at a CC(β) fortification level ranged from 28 to 90% for the SPME. In comparison, the PLE method was the most efficient extraction method with recoveries from 82 to 104%. It was followed by the QuEChERS method with recoveries between 78 and 101% and the SPE method with recoveries between 72 and 100%. The repeatability expressed as relative standard deviation (RSDs) was below 20% for all the pesticides by any of the tested extraction methods. Results obtained applying the four extraction techniques to real honey samples are analogous.  相似文献   

20.
In the present work, a review of the analytical methods developed in the last 15 years for the determination of endocrine disrupting chemicals (EDCs) in human samples related with children, including placenta, cord blood, amniotic fluid, maternal blood, maternal urine and breast milk, is proposed. Children are highly vulnerable to toxic chemicals in the environment. Among these environmental contaminants to which children are at risk of exposure are EDCs —substances able to alter the normal hormone function of wildlife and humans—. The work focuses mainly on sample preparation and instrumental techniques used for the detection and quantification of the analytes. The sample preparation techniques include, not only liquid–liquid extraction (LLE) and solid-phase extraction (SPE), but also modern microextraction techniques such as extraction with molecular imprinted polymers (MIPs), stir-bar sorptive extraction (SBSE), hollow-fiber liquid-phase microextraction (HF-LPME), dispersive liquid–liquid microextraction (DLLME), matrix solid phase dispersion (MSPD) or ultrasound-assisted extraction (UAE), which are becoming alternatives in the analysis of human samples. Most studies focus on minimizing the number of steps and using the lowest solvent amounts in the sample treatment. The usual instrumental techniques employed include liquid chromatography (LC), gas chromatography (GC) mainly coupled to tandem mass spectrometry. Multiresidue methods are being developed for the determination of several families of EDCs with one extraction step and limited sample preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号