共查询到20条相似文献,搜索用时 0 毫秒
1.
When working with capillary zone electrophoresis (CZE), the analyst has to be aware that the separation system is not homogeneous anymore as soon as a sample is brought into the background electrolyte (BGE). Upon injection, the analyte creates a disturbance in the concentration of the BGE, and the system retains a kind of memory for this inhomogeneity, which is propagated with time and leads to so-called system zones (or system eigenzones) migrating in an electric field with a certain eigenmobility. If recordable by the detector, they appear in the electropherogram as system peaks (or system eigenpeaks). However, although their appearance can not be forecasted and explained easily, they are inherent for the separation system. The progress in the theory of electromigration (accompanied by development of computer software) allows to treat the phenomenon of system zones and system peaks now also in very complex BGE systems, consisting of several multivalent weak electrolytes, and at all pH ranges. It also allows to predict the existence of BGEs having no stationary injection zone (or water zone, EO zone, gap, dip). Our paper reviews the theoretical background of the origin of the system zones (system peaks, system eigenpeaks), discusses the validity of the Kohlrausch regulating function, and gives practical hints for preparing BGEs with good separation ability not deteriorated by the occurrence of system peaks and by excessive peak-broadening. 相似文献
2.
In the last years, it has been shown that the formation and migration of system zones is an inherent feature of capillary zone electrophoresis (CZE) and that it depends predominantly on the composition of an actual background electrolyte (BGE). In most of the currently used BGEs, the SZs are invisible by the UV absorbance detection system, however, the comigration of SZs with the zones of analytes deteriorates the analytical performance of CZE and may be fatal for its utilization. Therefore, the theoretical predictions of the existence and migration of SZs is of key importance for the expediency of CZE. This is a review of the theoretical treatments of SZs which reveals the origin and the properties of SZs and shows how to cope with them. Also, a table of some typical BGEs is presented where the existence and mobilities of SZs are given. 相似文献
3.
We demonstrate that system zones (SZs) can be expected in background electrolytes (BGEs) with a low buffer capacity. The mobilities of this type of SZ (m(SZ)) could be determined by calculations both based on a mathematical model and by a simulation program. The values of m(SZ) are increasing for decreasing buffer capacities and lower concentrations of the BGEs. For completely unbuffered BGEs with a pH below 7, the m(SZ) reached values up to 350x10(-9) m(2)V(-1)s(-1). This value indicates that the existence of this type of SZ originates from migrating hydrogen ions. Although both the mathematical model and simulation program do not consider the influence of the pH of the sample solution, experiments have shown that the pH of the sample solution is also very important. The lower the pH of the sample solution, the larger the m(SZ) in a specific BGE for cationic SZs. Using completely unbuffered BGEs the hydrogen ions present in the original sample start to migrate freely through the capillary tube with the mobility of a single hydrogen ion and cause stepwise disturbances in the base line of the detector trace. It is remarkable that this type of SZ appears not to affect the electromigration dispersion (EMD) in a strong way and so far only dips could be obtained experimentally. 相似文献
4.
We present theoretical and experimental data indicating that anionic system zones (SZs), due to free migrating hydroxide anions, can be expected in background electrolytes (BGEs) with a low buffer capacity. In the system containing completely unbuffered BGEs the hydroxide ions derived from the sample start to migrate freely through the capillary tube with the mobility of single hydroxide ions and cause stepwise disturbances in the baseline of the detector trace. Remarkably, this type of SZs do not appear to contribute significantly to the electromigration dispersion (EMD) of the zones of the analytes. 相似文献
5.
The relationships between electromigration dispersion (EMD) and on-line isotachophoresis-capillary zone electrophoresis (ITP-CZE) are described for several basic model proteins and interleukin-6 (rhIL-6). During CZE separation of the highly concentrated analyte zones which were generated during the initial ITP step EMD evolves from intrinsic differences in conductivity between the focused ITP zones and the leading electrolyte. Nearly triangular peaks with a sharp front and diffuse rear side were observed. An electromigration dispersion factor (FEMD) was introduced to measure peak asymmetry. EMD of individual peaks was shown to increase with the absolute amount of the respective analyte injected and with analyte mobility. Good linearity was observed when FEMD was plotted against protein mobility (r > 0.95). The slope of the graphs describing this relationship increased with the amount of analyte injected. The influence of EMD on the separation efficiency of neighboring peaks appeared to be less pronounced than expected. Consecutive release from the ITP-stack during transition from ITP to CZE might be an explanation for this observation. 相似文献
6.
Shihabi ZK 《Journal of chromatography. A》2000,902(1):107-117
Due to the short light path of the capillaries, the CE detection limit based on concentration, is far less than that of HPLC and not sufficient for many practical applications. Several methods, based on different electrophoretic maneuvers, can concentrate the sample (stack) easily on the capillary before the separation step of capillary zone electrophoresis (CZE). These methods incorporate different types of discontinuous buffers as the means for invoking different velocities to the same analyte molecules to produce a sharpening of the band (stacking). In CZE, these buffers can be often very simple such as sample dilution or adding to the sample a high concentration of a fast mobility ion. However, in other applications these buffers can be as complicated as those required for isotachophoresis. Stacking can often yield a concentration factor of 5-30-fold, which can improve greatly in CZE the detection limits bringing them very close to those of HPLC. Different methods of stacking, the importance of discontinuous buffers and the different mechanism for concentration on the capillary are reviewed here. As there is a need for more practical applications, there will be more methods devised for stacking in CZE. 相似文献
7.
V Dolník 《Electrophoresis》1999,20(15-16):3106-3115
This review article with 125 references describes recent developments in capillary zone electrophoresis of proteins. It encompasses approximately the last two years, from the previous review (V. Dolník, Electrophoresis 1997, 18, 2353-2361) through Spring 1999. Topics covered include modeling of the electrophoretic properties of proteins, sample preconcentration and derivatization, wall coatings, improving selectivity, special detection techniques, and applications. 相似文献
8.
Palmer ME Smith RF Chambers K Tetler LW 《Rapid communications in mass spectrometry : RCM》2001,15(3):224-231
The use of capillary zone electrophoresis (CZE) and capillary zone electrophoresis/mass spectrometry (CZE/MS) has been demonstrated, in principle, for the separation of nicotine and nicotine metabolites. The buffer system developed for separation and detection by CZE/UV was modified for use in CZE/MS analysis. Several of the metabolites are isobaric and tandem mass spectrometric (MS/MS) techniques have been used to differentiate such analytes. 相似文献
9.
An indirect photometric detection method is described which is based on the use of an absorbing co-ion as the principal component of the background electrolyte. The zones of non-absorbing ionic species are revealed by changes in light absorption due to charge displacement of the absorbing co-ion. Theoretical considerations are given for selecting a suitable absorbing co-ion to achieve a high sensitivity of detection.The role of electromigration dispersion is illustrated by experiments and the effects of the differences in the effective mobilities of sample ions and that of the absorbing co-ion are discussed. The highest sensitivity can be achieved for sample ions having an effective mobility close to the mobility of the absorbing co-ion. In such a case, the concentration of the sample component in its migrating zone can be high while electromigration dispersion is still negligible. The useful dynamic range of the detection is then limited by the linearity and noise of the detector, the former parameter being given mostly by the shape of the on-column detection cell. The best sensitivities can be obtained in low-concentration background electrolytes containing a co-ion with high absorption at a given detection wavelength.It is shown that indirect photometric detection can be useful for detecting substances that have no optical absorption in the UV and/or visible region, provided that the composition of the background electrolyte is selected correctly. 相似文献
10.
Fused-silica capillaries are permanently coated by silanization with 3-{[3-(N-pyrrole)-2-hydroxypropyl]amino}propyltriethoxysilane followed by oxidative polymerization of the pyrrole moieties with iron (III) or peroxodisulfate in the presence of chloride, perchlorate, or dextransulfate as anions. This approach allows to modulate the EOF in its magnitude as well as in its direction. With the small anions chloride and perchlorate, the EOF is reversed below pH 5 while with the large dextransulfate polyanions (DS) the EOF is relatively constant over the pH range from 2.5 to 9.4. This can be of advantage at low pH, at which the EOF of uncoated capillaries is close to zero. Application for separation of some herbicides is shown. The lifetime of PP-modified capillaries is satisfactory: the decrease in EOF is less than 3% during 80 analyses (160 min) and less than 5% over three months of storage. The reproducibility of capillary modification is about 5% (RSD of EOF). 相似文献
11.
An instrument is described which is capable of collecting fractions from a capillary zone electrophoresis apparatus. The fraction collector is characterized in terms of discretely collecting the separated components of a multi-component sample. In addition, the fraction collector permits the study of the effect of capillary zone electrophoresis on the biological activity of alpha-chymotrypsin. 相似文献
12.
A simple construction of a split-flow injector eliminating some common problems connected with the use of such devices is described. It consists of a low-pressure pump, an injection valve and a delivery tube in which the separating capillary inlet is fixed. The sample is injected without moving the separating capillary inlet and without interrupting the applied voltage. The grounded electrophoretic electrode is close to the injection valve so that all metal parts of the injector are kept at a sufficiently low potential. Minimum length and small internal diameter of delivery tube minimizes additional sample zone broadening. The effects of some experimental parameters, such as the position of the separation capillary inlet with respect to the background solution flow direction and background solution flow-rate are experimentally studied. The injector was tested primarily for the electrokinetic injection. 相似文献
13.
Enzymes immobilized on the inner surface of an electrophoretic capillary were used to increase sensitivity and resolution in capillary zone electrophoresis (CZE). Sensitivity is enhanced by inserting a piece of capillary containing the immobilized enzyme into the main capillary, located before the detector, in order to transform the analyte into a product with a higher absorptivity. This approach was used to determine ethanol. In order to improve resolution, capillary pieces containing immobilized enzymes were inserted at various strategic positions along the electrophoretic capillary. On reaching the enzyme, the analyte was converted into a product with a high electrophoretic mobility, the migration time for which was a function of the position of the enzyme reactor. This approach was applied to the separation and determination of acetaldehyde and pyruvate. Finally, the proposed method was validated with the determination of ethanol, acetaldehyde, and pyruvate in beer and wine samples. 相似文献
14.
A method for the determination of propionate in bread is described. The propionate was extracted from the bread with a repeated extraction procedure and measured using capillary zone electrophoresis in the indirect UV mode applying a background electrolyte of 0.005 M Tris adjusted at pH 4.6 by adding benzoic acid. Using laboratory-baked bread containing known amounts of sodium propionate, recoveries of ca. 95% could be established, validating the method. 相似文献
15.
Cyclodextrins added to the background electrolyte are shown to be useful for the resolution of racemic compounds in their enantiomers. Several parameters have to be controlled in order to achieve resolution, e.g., cyclodextrin type, concentration, analyte shape, as well as column temperature. The resolution of nor-epinephrine, epinephrine and isoproterenol in their enantiomers decreased by increasing the column temperature. Octopamine and ketamine have been resolved by supporting the background electrolyte with 2, 6-di-O-methyl-beta-cyclodextrin. In spite of the stronger inclusion-complex of ketamine than octopamine with the modified cyclodextrin its resolution was not satisfactory. 相似文献
16.
This paper describes the use of high-performance capillary electrophoresis for the separation of globin chains. Adult and newborn haemolysates from normal individuals and children suspected of having thalassaemia were analysed using free zone electrophoresis. Separation of globins was accomplished using a 25 mM phosphate buffer at pH 11.8. Distinct peaks of alpha-, beta- and gamma-chains were resolved within 8 min. The coefficient of variation for within-day and between-day runs was 4.1% and 5.7%, respectively. This method is simple and rapid, and it can be used to screen for thalassaemia and for the clinical study of various haemoglobinopathies. 相似文献
17.
CApillary zone electrophoresis was tested for its suitability for studying protein-drug binding. Three methods were investigated, viz., the Hummel-Dreyer method, the vacancy peak method and frontal analysis. Frontal analysis appeared to be the preferred method. 相似文献
18.
Poor sensitivity and low phase ratio are the main drawbacks of open tubular capillary electrochromatography (OTCEC). The poor sensitivity results from the use of narrow bore size capillary, whereas the low phase ratio, which limits the separation capability, is caused by the limited surface area of conventional capillary. Two strategies may be useful to overcome these disadvantages. First, an extended light path (ELP) capillary, which has a bubble cell at the detection point, is used to improve the sensitivity. Secondly, an etched capillary of a 1,000-fold increased surface area is used to enhance the phase ratio. In this work, use of an ELP capillary and an etched capillary in OTCEC was evaluated with a chiral stationary phase of avidin prepared with the physical adsorption method. With a 20 microm I.D. ELP capillary with a 150 microm bubble cell, the peak height was enhanced by 4-10-fold and the corrected peak area was increased by 12-fold relative to a 20 microm I.D. conventional capillary. However, the peak efficiency and resolution decreased noticeably. The phase ratio on the etched capillary was slightly enhanced, by a factor of 1.64 relative to an unetched capillary. Consequently, the separation capability was slightly improved. The increase in the phase ratio was much lower than that expected from the increase in surface area, the reason for which is probably the reduced density of surface silanol group and the generation of nitrogen-containing groups due to the etching process. 相似文献
19.
20.
An improvement has been made to couple isoelectric focusing (IEF) sample injection and capillary zone electrophoresis in an untreated fused silica capillary. Electroosmotic flow is efficiently prevented by simply using a rubber block at the outlet end of the capillary during IEF sample injection. The experimental conditions that affect the concentration effect are discussed. A concentration enhancement factor of over 100-fold can be easily obtained for two model proteins: lysozyme and ribonuclease A. 相似文献