首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel carrier of ultradispersed diamond black powder (UDDBP) was used to support metallocene catalyst. Al2O3 was also used as carrier in order to compare with UDDBP. Supported catalysts for ethylene polymerization were synthesized by two different reaction methods. One way was direct immobilization of the metallocene on the support, the other was adsorption of MAO onto the support followed by addition of the metallocene. Four supported catalysts Cp2ZrCl2/UDDBP, Cp2ZrCl2/Al2O3, Cp2ZrCl2/MAO/UDDBP and Cp2ZrCl2/Al2O3/MAO were obtained. The content of the zirconium in the supported catalyst was determined by UV spectroscopy. The activity of the ethylene polymerization catalyzed by supported catalyst was investigated. The influence of Al/Zr molar ratio and polymerization temperature on the activity was discussed. The polymerization rate was also observed.  相似文献   

2.
By treating cyclodextrin(CD) with methylaluminoxane (MAO such as PMAO or MMAO) or trimethylaluminium (TMA) followed by Cp2ZrCl2, CD/PMAO/Cp2ZrCl2, CD/MMAO/Cp2ZrCl2 and CD/TMA/Cp2ZrCl2 catalysts were prepared. The catalysts were analyzed by 13C-CP/MAS NMR spectrometer and ICP to examine the structure of catalyst and content of Zr and Al. Ethylene polymerization was conducted with MAO or TMA as cocatalyst. Styrene polymerization was also carried out with α-CD/MMAO/Cp*TiCl3 and α-CD/TMA/Cp*TiCl3 catalysts. While the ordinary trialkylaluminium such as TMA as well as MAO can be used as cocatalyst for ethylene polymerization, only MAO could initiate the styrene polymerization with α-CD supported catalysts.  相似文献   

3.
SILICA-SUPPORTED NICKEL AND ZIRCONIUM CATALYSTS FOR BRANCHED POLYETHYLENE*   总被引:2,自引:0,他引:2  
8-Aminoquinoline nickel dichloride and bis(cyclopentadienyl)zirconium dichloride (Cp_2ZrCl_2) were supportedsimultaneously on silica to produce branched polyethylene successfully by combined polymerization. The supportedpolymerization results showed that the molecular weight of polyethylene increased while the molecular weight distributionbecame wider and the molecular chains of oligomers remaning in the final solution became shorter as compared to theoligomers obtained in polymerization processes with pure 8-aminoquinoline nickel dichloride catalysis, as well as theCp_2ZrCl_2 and nickel combination system. With decreasing amount of Ni catalyst in the supported catalyst, the molecular chains of oligomers in the resulting solution became shorter, while α-olefin selectivity increased.  相似文献   

4.
Cp2ZrCl2 confined inside the supercage of NaY zeolites [NaY/methylaluminoxane (MAO)/Cp2ZrCl2] exhibited the shape and diffusion of a monomer‐controlled copolymerization mechanism that strongly depended on the molecular structure of the monomer and its size. For the ethylene–propylene copolymerization, NaY/MAO/Cp2ZrCl2 showed the effect of the comonomer on the increase in the polymerization rate in the presence of propylene, whereas the ethylene/1‐hexene copolymerization showed little comonomer effect, and the ethylene/1‐octene copolymerization instead showed a comonomer depression effect on the polymerization rate. Isobutylene, having a larger kinetic diameter, had little influence on the copolymerization behaviors with NaY/MAO/Cp2ZrCl2 for the ethylene–isobutylene copolymerization, which showed evidence of the shape and diffusion of a monomer‐controlled mechanism. The content of the comonomer in the copolymer chain prepared with NaY/MAO/Cp2ZrCl2 decreased by about one‐half in comparison with that of Cp2ZrCl2. A differential scanning calorimetry study on the melting endotherms after the successive annealing of the copolymers showed that the copolymers of NaY/MAO/Cp2ZrCl2 had narrow comonomer distributions, whereas those of homogeneous Cp2ZrCl2 were broad. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2171–2179, 2003  相似文献   

5.
(CpCH_2CH_2CH = CH_2)_2MCl_2(M=Zr, Hf)/MAO and Cp_2ZrCl_2/MAO (Cp=cyclopentadienyl; MAO=methylaluminoxane) catalyst systems have been compared for ethylene copolymerization to investigate the influence of theligand and transition metal on the polymerization activity and copolymer properties. For both CH_2CH_2CH=CH_2 substitutedcatalysts the catalytic activity decreased with increasing propene concentration in the feed. The activity of the hafnocenecatalyst was 6~8 times lower than that of the analogous zirconocene catalyst, ~(13)C NMR analysis showed that the copolymerobtained using the unsubstituted catalyst Cp_2ZrCl_2 has greater incorporatien of propene than those produced byCH_2CH_2CH=CH_2 substituted Zr and Hf catalysts. The melting point, crystallinity and the viscosity-average molecularweight of the copolymer decreased with an increase of propenc concentration in the feed. Both CH_2CH_2CH= CH_2 substitutedZr and Hf catalysts exhibit little or no difference in the melting point and crystallinity of the produced copolymers. However,there are significant differences between the two zirconocene catalysts. The copolymer produced by Cp_2ZrCl_2 catalyst havemuch lower T_m and X_c than those obtained with the (CpCH_2CH_2CH=CH_2)_2ZrCl_2 catalyst. The density and molecular weightof the copolymer decreased in the order: (CpCH_2CH_2CH=CH_2)_2HfCl_2>(CpCH_2CH_2CH=CH_2)_2ZrCl_2>Cp_2ZrCl_2. The kineticbehavior of copolymerizaton with Hf catalyst was found to be different from that with Zr catalyst.  相似文献   

6.
Metallocene catalysts entrapped inside the supercages of NaY zeolite were prepared by reacting NaY with methylaluminoxane (MAO) or trimethylaluminium (TMA) and then with Cp2ZrCl2 (Cp: cyclopentadienyl) or Cp2TiCl2. NaY/MAO/Cp2ZrCl2 and NaY/MAO/Cp2TiCl2 catalysts could polymerize ethylene. The amount of additional MAO for the polymerization was lowered to a mole ratio of Al/Zr of 186. Molecular weights and melting points of polyethylene polymerized with NaY-supported catalysts were higher than those of polyethylene obtained with homogeneous metallocene catalysts. It could be confirmed by extraction experiments that the metallocene catalyst was confined securely inside the supercage of the NaY zeolite.  相似文献   

7.
Ethylene polymerization was carried out with zirconocene catalysts supported on montmorillonite (or functionalized montmorillonite). The functionalized montmorillonite was from simple ion exchange of [CH3O2CCH2NH3]+ (MeGlyH+) ions with interlamellar cations of layered montmorillonites. The functionalized montmorillonites [high‐purity montmorillonite (MMT)‐MeGlyH+] had larger interlayer spacing (12.69 Å) than montmorillonites without treatment (9.65 Å). The zirconocene catalyst system [Cp2ZrCl2/methylaluminoxane (MAO)/MMT‐MeGlyH+] had much higher Zr loading and higher activities than those of other zirconocene catalyst systems (Cp2ZrCl2/MMT, Cp2ZrCl2/MMT‐MeGlyH+, Cp2ZrCl2/MAO/MMT, [Cp2ZrCl]+[BF4]/MMT, [Cp2ZrCl]+[BF4]?/MMT‐MeGlyH+, [Cp2ZrCl]+[BF4]?/MAO/MMT‐MeGlyH+, and [Cp2ZrCl]+[BF4]?/MAO/MMT). The polyethylenes with good bulk density were obtained from the catalyst systems, particularly (Cp2ZrCl2/MAO/MMT‐MeGlyH+). MeGlyH+ and MAO seemed to play important roles for preparation of the supported zirconocenes and polymerization of ethylene. The difference in Zr loading and catalytic activity among the supported zirconocene catalysts is discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1892–1898, 2002  相似文献   

8.
采用等体积浸渍法制备了负载型Ni/SiO2催化剂,研究了Ce、Zr、La、Co和Fe助剂对催化剂微观结构及其催化二硝基甲苯(DNT,C6H3CH3(NO22)加氢制备甲苯二胺(TDA,C6H3CH3(NH22)性能的影响。通过XRD,BET,H2-TPD、H2-TPR和XPS技术对催化剂进行了表征。结果表明,助剂的引入促进了Ni物种在载体表面的分散,减小了Ni晶粒的尺寸,使得NiO晶粒更易还原。添加La、Fe和Zr助剂增加了有效的Ni活性中心数,有利于催化活性的提高,其中,添加La助剂制备的催化剂催化性能最优,DNT转化率和TDA选择性分别为98.1%和99.1%。但Co和Ce助剂的加入降低了化学氢吸附量,使得有效的Ni活性中心数降低,降低了催化剂的催化活性。  相似文献   

9.
于智慧  闫泽  范辉  李忠 《无机化学学报》2014,30(6):1317-1324
采用等体积浸渍法制备了负载型Ni/SiO2催化剂,研究了Ce、Zr、La、Co和Fe助剂对催化剂微观结构及其催化二硝基甲苯(DNT,C6H3CH3(NO2)2)加氢制备甲苯二胺(TDA,C6H3CH3(NH2)2)性能的影响。通过XRD,BET,H2-TPD、H2-TPR和XPS技术对催化剂进行了表征。结果表明,助剂的引入促进了Ni物种在载体表面的分散,减小了Ni晶粒的尺寸,使得NiO晶粒更易还原。添加La、Fe和Zr助剂增加了有效的Ni活性中心数,有利于催化活性的提高,其中,添加La助剂制备的催化剂催化性能最优,DNT转化率和TDA选择性分别为98.1%和99.1%。但Co和Ce助剂的加入降低了化学氢吸附量,使得有效的Ni活性中心数降低,降低了催化剂的催化活性。  相似文献   

10.
The study of ethylene/1‐hexene copolymerization with the zirconocene catalyst, bis(cyclopentadienyl)zirconium dichloride (Cp2ZrCl2)/methylaluminoxane (MAO), anchored on a MgCl2(THF)2 support was carried out. The influence of 1‐hexene concentration in the feed on catalyst productivity and comonomer reactivity as well as other properties was investigated. Additionally, the effect of support modification by the organoaluminum compounds [(MAO, trimethlaluminum (AlMe3), or diethylaluminum chloride (Et2AlCl)] on the behavior of the MgCl2(THF)2/Cp2ZrCl2/MAO catalyst in the copolymerization process and on the properties of the copolymers was explored. Immobilization of the Cp2ZrCl2 compound on the complex magnesium support MgCl2(THF)2 resulted in an effective system for the copolymerization of ethylene with 1‐hexene. The modification of the support as well as the kind of organoaluminum compound used as a modifier influenced the activity of the examined catalyst system. Additionally, the profitable influence of immobilization of the homogeneous catalyst as well as modification of the support applied on the molecular weight and molecular weight distribution of the copolymers was established. Finally, with the successive self‐nucleation/annealing procedure, the copolymers obtained over both homogeneous and heterogeneous metallocene catalysts were heterogeneous with respect to their chemical composition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2512–2519, 2004  相似文献   

11.
Mathematical models are developed to describe the polymerization of ethylene and 1‐hexene with a constrained geometry catalyst (CGC‐Ti) and with bis(cyclopentadienyl)‐zirconium (IV) dichloride (Cp2ZrCl2). Particle swarm optimization is used to fit these models to homo‐ and copolymerization data. The models are also used to describe copolymerizations with mixtures of CGC‐Ti and Cp2ZrCl2 to make copolymers with inverse short chain branching distribution. Copolymer molecular weight and short chain branch distributions, as well as polymerization rates with the dual metallocene system, are measured to test whether they agreed with model predictions. The results show that the two metallocenes do not interact strongly when used as a mixture to make ethylene/1‐hexene copolymers.  相似文献   

12.
The polymerization kinetics of propene polymerization using metallocene/methylaluminoxane (MAO) homogeneous catalysts have been investigated to explore the role of donor/acceptor interactions and to enhance the catalyst productivities. In the case of the non-stereospecific Cp2ZrCl2/MAO model system it has been demonstrated that, in addition to the well known irreversible deactivation, reversible deactivations, which are second order relative to the zirconium active site concentration, account for the decay of the polymerization rate. While MAO injection during polymerization enhances the polymerization rate, zirconocene addition deactivates the catalyst which can be reactivated by injecting additional MAO. A sequence of dynamic equilibria involving the formation of active cationic metallocene intermediates as well as inactive zirconocene species, e.g., zirconocene dimers, is proposed. Lewis base and Lewis acid additives have been added as probes to examine the role of such equilibria in the case of metallocene-based catalyst systems such as MAO-activated Cp2ZrCl2, racemic ethylenebisindenyl zirconium dichloride (EBIZrCl2), and racemic ethylenebis (4,5,6,7-tetrahydroindenyl) zirconium dichloride (EBTHIZrCl2). While the conventional donors such as 2,6-ditert.butyl-4-methylphenol (BHT) and 2,2,6,6-tetramethylpiperidine (TMP) reduce catalyst productivities, even at very low donor/Al molar ratios, increasing propene concentration and addition of trimethylboroxine (TMB) substantially enhance catalyst productivities and affect molecular weights of the polypropylene produced with metallocene/MAO catalysts.  相似文献   

13.
Homogeneous and silica‐supported Cp2ZrCl2/methylaluminoxane (MAO) catalyst systems have been used for the copolymerization of ethylene with 1‐butene, 1‐hexene, 4‐methylpentene‐1 (4‐MP‐1), and 1‐octene in order to compare the “comonomer effect” obtained with a homogeneous metallocene‐based catalyst system with that obtained using a heterogenized form of the same metallocene‐based catalyst system. The results obtained indicated that at 70 °C there was general rate depression with the homogeneous catalyst system whereas rate enhancement occurred in all copolymerizations carried out with the silica‐supported catalyst system. Rate enhancement was observed for both the homogeneous and the silica‐supported catalyst systems when ethylene/4‐MP‐1 copolymerization was carried out at 50 °C. Active center studies during ethylene/4‐MP‐1 copolymerization indicated that the rate depression during copolymerization using the homogeneous catalyst system at 70 °C was due to a reduction in the active center concentration. However, the increase in polymerization rate when the silica‐supported catalyst system was used at the same temperature resulted from an increase in the propagation rate coefficient. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 267–277, 2008  相似文献   

14.
The preparation of synthesis gas from carbon dioxide reforming of methane (CDR) has attracted increasing attention. The present review mainly focuses on CDR to produce synthesis gas over Ni/MOx/Al2O3 (X = La, Mg, Ca) catalysts. From the examination of various supported nickel catalysts, the promotional effects of La2O3, MgO, and CaO have been found. The addition of promoters to Al2O3-supported nickel catalysts enhances the catalytic activity as well as stability. The catalytic performance is strongly dependent on the loading amount of promoters. For example, the highest CH4 and CO2 conversion were obtained when the ratios of metal M to Al were in the range of 0.04–0.06. In the case of Ni/La2O3/Al2O3 catalyst, the highest CH4 conversion (96%) and CO2 conversion (97%) was achieved with the catalyst (La/Al = 0.05 (atom/atom)). For Ni/CaO/Al2O3 catalyst, the catalyst with Ca/Al = 0.04 (atom/atom) exhibited the highest CH4 conversion (91%) and CO2 conversion (92%) among the catalysts with various CaO content. Also, Ni/MgO/Al2O3 catalyst with Mg/Al = 0.06 (atom/atom) showed the highest CH4 conversion (89%) and CO2 conversion (90%) among the catalysts with various Mg/Al ratios. Thus it is most likely that the optimal ratios of M to Al for the highest activities of the catalysts are related to the highly dispersed metal species. In addition, the improved catalytic performance of Al2O3-supported nickel catalysts promoted with metal oxides is due to the strong interaction between Ni and metal oxide, the stabilization of metal oxide on Al2O3 and the basic property of metal oxide to prevent carbon formation.  相似文献   

15.
A direct and efficient route to the synthesis of hydroxyl functional polyethylene was identified by copolymerization of ethylene with bicyclo[2.2.1]hept-5-ene-2-methanol prereacted with trimethylaluminium using the catalyst system metallocene/MAO. Copolymerization studies were conducted using three metallocenes, namely, Cp2ZrCl2, Et(ind)2ZrCl2 and Me2SiCp2ZrCl2 the last one of which gave a copolymer containing as much as 6.2 mol-% of alcohol. The effect of the Al/Zr ratio as well as of temperature was studied. The copolymers were characterized by means of 1H NMR, differential scanning calorimetry, and intrinsic viscosity measurements.  相似文献   

16.
The subject of this work is ethylene polymerisation using Kaminsky type catalysts: Cp2MR2=methylaluminoxane [M=Zr, W, Nb; R=Cl, CH3]. Active center determination and kinetic studies of the (Cp2WCl2+methylaluminoxane) and Cp2ZrCl2+methylaluminoxane) systems are described, using a quenching method with tritiated methanol. The activity of the polymer was determined by liquid scintillation counting. We have found 0.5% and 87% of active centers, respectively for W and Zr system. The catalytic activity of complexes Cp2WCl2 and Cp2NbCl2 was compared with that of Cp2ZrCl2. The W and Nb complexes are found to be less active than the Zr complex.  相似文献   

17.
To generate an active site that consisted of one Cp2ZrCl2 molecule and 1-2 MAO molecules inside supercage of NaY zeolite, two preparation ways for supported catalyst were estimated. First, higher concentration of MAO and Cp2ZrCl2, and long reaction time were introduced during the preparation of supported catalyst. It showed activity in ethylene polymerization without any additional MAO. It indicates that Cp2ZrCl2 coordinated with only 1-2 MAO molecules could be an active site due to the fact that supercage has nano-scaled diameter of supercage, 1.2 nm, and it could contain only 1-2 MAO molecules inside it theoretically. In situ generation of active site between NaY/MAO and homogeneous Cp2ZrCl2 also showed experimental evidence that an active site was generated inside the supercage of NaY zeolite. It showed low activity with long activation time, suggesting the presence of a diffusion effect of Cp2ZrCl2 in the pore of NaY. However, NaY/Cp2ZrCl2 and homogeneous MAO system showed the characteristic PE polymerization with homogeneous catalyst, indicating that active site was not generated inside the supercage of NaY.  相似文献   

18.
Benz[f]indenyl zirconium complexes have been successfully synthesized and characterized. Their catalytic activities were evaluated for the polymerization of ethylene. The complexes combined with MAO can be highly active single site catalysts, which display activities comparable with that of the Cp2ZrCl2/MAO system and provide very high molecular weight polyethylenes. The melting point of the polymers indicates the formation of linear polyethylene.  相似文献   

19.
Copolymerizations of ethylene/1-butene, and ethylene/1-decene and terpolymerization of ethylene/1-butene/1-decene were carried out in n-heptane with various concentrations of comonomer in the feed. Cp2ZrCl2-methylaluminoxane (MAO) was used as catalyst. When comonomers were added into the ethylene polymerization, the activity of the catalyst increased significantly and continued to do so as the concentration of the comonomer was increased. At the same time as the comonomer concentration and catalyst activity increased, the molecular weight and crystallinity of the polymers decreased. An important reason for the activity enhancement may, therefore, be that the comonomer takes part in the activation of catalytic centers, decreasing the activation energy required for monomer to insert into the active centers. Use of Cp2ZrCl2-MAO catalyst allowed the preparation of ethylene/1-decene copolymers containing 20 wt % of 1-decene. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
A number of metallocene/methylaluminoxane (MAO) catalysts have been compared for ethylene/propylene copolymerizations to find relationship between the polymerization activities, copolymer structures, and copolymerization reactivity ratio with the catalyst structures. Stereorigid racemic ethylene bis (indenyl) zirconium dichloride and the tetrahydro derivative exhibit very high activity of 10 7 g (mol Zr h bar)?1, giving copolymers having comonomer compositions about the same as the feed compositions, molecular weights increasing with the increase of ethylene in the feed, random incorporation of comonomers, and narrow molecular weight distribution indicative of a single catalytic species. Nonbridged bis (indenyl) zirconium behaved differently, favoring the incorporation of ethylene over propylene, producing copolymers whose molecular weight decreases with the increase of ethylene in the feed, broad molecular weight distribution, and a methanol soluble fraction. This catalyst system contains two or more active species. Simple methallocene catalysts have much lower polymerization activities. CpTiCl2/MAO produced copolymers with tendency toward alternation, whereas Cp2HfCl2/MAO gave copolymer containing short blocks of monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号