首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exchange kinetics of Ba2+-18-crown-6 complex in deuterated methanol solution was studied by proton NMR line-shape analysis of a series of solutions containing equal population of free and complexed 18-crown-6, but varying concentration of the macrocycle, at various temperatures. From –33 to 37°C, the predominant mechanism for the exchange of the ligand between the two sites is a bimolecular pathway which is characterized by the following activation parameters:E a=47±2 kJ-mol–1; H =45±2 kJ-mol–1; S =–8±4 J-mol–1-K–1. However, the contribution of a dissociative mechanism with activation parametersE a=36±5 kJ-mol–1, H =33±5 kJ-mol–1 and S =104±18 J-mol–1-K–1 becomes more important at higher temperatures.  相似文献   

2.
The kinetics of oxidation of tartaric acid by Ce(IV) in the absence and presence of acrylamide has been investigated spectrophotometrically in aqueous H2SO4–HClO4 media at a constant ionic strength 2.0M and 25°C. Oxidation of tartaric acid in both cases was first order with respect to Ce(IV). Kinetic data showed that the reaction involves the formation of an unstable complex and an intermediate free radical. The activation parameters were calculated to be E a =91.3±0.4 kJ-mol–1, S=20.2±1.0 J-mol–1-K–1, H=88.8±0.4 kJ-mol–1. A polymerization mechanism is discussed.  相似文献   

3.
Formation constants for the tribromide and pentabromide anions were measured by a vapor partitioning method from 5 to 80°C. The molal thermodynamic parameters for these respective species at 25°C are: K 3 –16.73, H o =–5.90 kJ-mol –1 , Cp o =–29 J-K –1 -mol –1 , and S o =3.6 J-K –1 -mol –1 ; K 5 =37.7, H o =–13.0 kJ-mol –1 , S o =–13.6 J-K –1 -mol –1 , with Cp o assumed zero. These results are used to reevaluate published emf results for the bromine/bromide couple.  相似文献   

4.
The first and second dissociation constants of deuterio-o-phthalic acid in deuterium oxide have been determined by the emf method over the temperature range of 5 to 50°C. The pD values for potassium deuterium phthalate have been calculated from these two constants and experimentally verified. The thermodynamic properties for the dissociation of deuterio-o-phthalic acid have been evaluated. At 25°C, these values in the molality scale are: pK 1A =3.505, pK 2A =5.890, and pD=4.518. From K 1A and K 2A , respectively: G o =20.003, 33.582 kJ-mol–1; H o =2.851, 2.208 kJ-mol–1; S o =–76.7, –105.2 J-mol–1-K–1; and C p o =–52.7, –315.6 J-mol–1-K–1. The isotope effect is discussed.  相似文献   

5.
The thermodynamic characterization of the weakly complexed model system Sm3+-xylitol has been carried out. The standard Gibbs energy enthalpy, entropy, volume and heat capacity of complexation of Sm3+ by xylitol have been determined in water at 25°. The stability constant and the enthalpy change have been simultaneously determined by using a calorimetric method. The thermodynamic properties characterizing solely the specific interaction between the cation and the complexing sequence of hydroxyl groups of the ligand have been isolated. The stability constant and the volume of complexation have also been estimated from a similar treatment of the apparent molar volumes. It was found that the reaction between Sm3+ and the complexing site of xylitol in water is characterized by: K = 8.1, rGo = –5.2 kJ-mol–1, rHo = –13.7 kJ-mol–1, TrSo = –8.5 kJ-mol–1, rVo = 8.8 cm3-mol–1 and rC p o = 51 J-K–1-mol–1.  相似文献   

6.
The first and second molal dissociation quotients of malonic acid were measured potentiometrically in a concentration cell fitted with hydrogen electrodes. The hydrogen ion molality of malonic acid/bimalonate solutions was measured relative to a standard aqueous HCl solution from 0 to 100°C over 25° intervals at five ionic strengths ranging from 0.1 to 5.0 molal (NaCl). The molal dissociation quotients and available literature data were treated in the all anionic form by a seven-term equation. This treatment yielded the following thermodynamic quantities for the first acid dissociation equilibrium at 25°C: logK 1a =-2.852±0.003, H 1a /o =0.1±0.3 kJ-mol–1, S 1a o =–54.4±1.0 J-mol–1-K–1, and C p,1a o =–185±20 J-mol–1-K–1. Measurements of the bimalonate/malonate system were made over the same intervals of temperature and ionic strength. A similar regression of the present and previously published equilibrium quotients using a seven-term equation yielded the following values for the second acid dissociation equilibrium at 25°C: logK2a=–5.697±0.001, H 2a o =–5.13±0.11 kJ-mol–1, S 2a o =–126.3±0.4 J-mol–1-K–1, and C p,2a o =–250+10 J-mol–1-K–1.Presented at the Second International Symposium on Chemistry in High Temperature Water, Provo, UT, August 1991.  相似文献   

7.
Complex formation of copper(II) with N,N-dimethylformamide(DMF) has been investigated calorimetrically in acetonitrile at 25°C. Calorimetric titration curves obtained are explained in terms of formation of [Cu(dmf) n ]2+ (n=1–4, 6) and their formation constants, enthalpies and entropies were determined. Formation of [Cu(dmf)5]2+ is uncertain. The stepwise enthalpies S 3 0 and entropies S n 0 at each consecutive step are all negative except for S 3 0 . The overall enthalpies of formation of [Cu(dmf)6]2+ is –(77.8±5.4) kJ-mol–1, which is compared with the enthalpy of transfer of copper(II) ion, H t o =–79.7 kJ-mol–1, from acetonitrile to DMF.  相似文献   

8.
Thermodynamic ion-association constants for calcium, cobalt, zinc, and cadmium sulfates in aqueous solutions were determined by means of conductivity measurements at various temperatures between 0°C and 45°C. The standard Gibbs energy, enthalpy, and entropy for the reaction M 2+ +SO 4 2– M 2+ ·SO 4 2– (M=Ca, Co, Zn, and Cd) were calculated from the temperature dependence of the ion-association constants. The values obtained are as follows: G 298 o =–12.42 kJ-mole –1 , H o =6.11 kJ-mole –1 , and S 298 o =62.1 J- o K –1 -mole –1 for Ca 2+ ·SO 4 2– ; G 298 o =–12.84 kJ-mole –1 , H o =5.00 kJ-mole –1 , and S 298 o =59.8 J- o K –1 -mole–1 for Co 2+ ·SO 4 2– ; G 298 o =–12.65 kJ-mole –1 , H o =8.65 kJ-mole –1 , and S 298 o =71.4 J- o K –1 -mole –1 for Zn 2+ ·SO 4 2– ; G 298 o =–13.28 kJ-mole –1 , H o =8.39 kJ-mole –1 , and S 298 o =72.7 J- o K –1 -mole –1 for Cd 2+ ·SO 4 2– .  相似文献   

9.
The first and second molal dissociation quotients of succinic acid were measured potentiometrically with a hydrogen-electrode, concentration cell. These measurements were carried out from 0 to 225°C over 25° intervals at five ionic strengths ranging from 0.1 to 5.0 molal (NaCl). The dissociation quotients from this and two other studies were combined and treated with empirical equations to yield the following thermodynamic quantities for the first acid dissociation equilibrium at 25°C: log K1a=–4.210±0.003; H 1a 0 =2.9±0.2 kJ-mol–1; S 1a 0 =–71±1 J-mol–1-K–1; and C p1a 0 =–98±3 J-mol–1-K–1; and for the second acid dissociation equilibrium at 25°C: log K2a=–5.638±0.001; H 2a 0 = –0.5±0.1 kJ-mol–1; S 2a 0 =–109.7±0.4 J-mol–1-K–1; and C p2a 0 = –215±8 J-mol–1-K–1.  相似文献   

10.
The first and second molal dissociation quotients of oxalic acid were measured potentiometrically in a concentration cell fitted with hydrogen electrodes. The emf of oxalic acid-bioxalate solutions was measured relative to an HCl standard solution from 25 to 125°C over 25o intervals at nine ionic strengths ranging from 0.1 to 5.0 molal (NaCl). The molal dissociation quotients and available literature data were treated in the all anionic form by a five-term equation that yielded the following thermodynamic quantities at infinite dilution and 25°C: logK1a=–1.277±0.010, H 1a o =–4.1±1.1 kJ-mol–1, S 1a o =38±4 J-K–1-mol–1, and C p,1a o =–168±41 J-K–1-mol–1. Similar measurements of the bioxalate-oxalate system were made at 25o intervals from 0 to 175°C at seven ionic strengths from 0.1 to 5.0m. A similar regression of the experimentally-derived and published equilibrium quotients using a seven-term equation yielded the following values at infinite dilution and 25°C: logK2a=–4.275±0.006, H 2a o =–6.8±0.5 kJ-mol–1, S 2a o =–105±2 J-K–1-mol–1, and C p,2a o =–261±12 J-K–1-mol–1.  相似文献   

11.
Recent determination of the standard enthalpy of formation of the ammonium azide f H O (NH N 3,c) and the assignment of the viscosity B-coefficient for the azide anion, B(N 3 ,aq), in aqueous solution enable us to estimate the standard enthalpy of formation of the gaseous azide anion, f H O (N 3 –,g , — a thermochemical magnitude in some dispute — to be 192 kJ-mol–1.  相似文献   

12.
The pressure dependence of excited-state proton transfer equilibria has been examined for aqueous solutions of several substituted napthalene dyes, in particular 1-dimethylaminonaphthalene-5-sulfonic acid (DANS). The pressure-induced shift in equilibrium is characterized by volume changes spanning the range V *=–18 cm3 mole–1 to V *=+4 cm3-mole–1. A deuterium oxide solvent isotope effect is evident in the pressure response of DANS, leading to a 35% smaller V* in D2O relative to H2O.  相似文献   

13.
Apparent equilibrium constants and calorimetric enthalpies of reaction have been measured for the reaction L-tryptophan(aq) + H2O(l) = indole(aq) + pyruvate(aq) + ammonia(aq) which is catalyzed by L-tryptophanase. High-pressure liquid-chromatography and microcalorimetery were used to perform these measurements. The equilibrium measurements were performed as a function of pH, temperature, and ionic strength. The results have been interpreted with a chemical equilibrium model to obtain thermodynamic quantities for the reference reaction: L-tryptophan(aq) + H2O(l) = indole(aq) + pyruvate(aq) + NH 4 + (aq). At T=25°C and Im=O the results for this reaction are: Ko=(1.05±0.13)×10–4, G°=(22.71±0.33) kJ-mol–1, H°=(62.0±2.3) kJ-mol–1, and S°=(132±8) J-K–1-mol–1. These results have been used together with thermodynamic results from the literature to calculate standard Gibbs energies of formation, standard enthalpies of formation, standard molar entropies, standard molar heat capacities, and standard transformed formation properties for the substances participating in this reaction.Presented at the Symposium, 76th CSC Congress, Sherbrooke, Quebec, May 30–June 3, 1993, honoring Professor Donald Patterson on the occasion of his 65th birthday.  相似文献   

14.
The dissociation quotients of formic acid were measured potentiometrically from 25 to 200°C in NaCl solutions at ionic strengths of 0.1, 0.3 1.0, 3.0, and 5.0 mol-kg–1. The experiments were carried out in a concentration cell with hydrogen electrodes. The resulting molal acid dissociation quotients for formic acid, as well as a set of infinite dilution literature values and a calorimetrically-determined enthalpy of reaction, were fitted by an empirical equation involving an extended Debye Hückel term and seven adjustable parameters involving functions of temperature and ionic strength. This regressional analysis yielded the following thermodynamic quantities for 25°C: logK=–3.755±0.002, Ho=–0.09±0.15 kJ-mol–1, So=–72.2±0.5 J-K–1-mol–1, and C p o =–147±4 J-K–1-mol–1. The isocoulombic form of the equilibrium constant is recommended for extrapolation to higher temperatures.  相似文献   

15.
Solubility of naphthalene in water was measured at 25°C and pressures up to 200 MPa. The solubility decreased with increasing pressure. From the pressure coefficient of the solubility, the volume change V accompanying the dissolution was estimated as 13.8±0.4 cm 3 -mol –1 . Further we estimated the volume change V CH accompanying hydrophobic hydration as –0.1±0.6 cm 3 -mol –1 using the V value, the molar volume of crystalline naphthalene, and the partial molar volume of naphthalene in n-heptane. This V CH is much larger (i.e., less negative) than that for hydrophobic hydration of alkyl-chain compounds and suggests that the hydration structure of naphthalene differs from that of alkyl-chain compounds.  相似文献   

16.
Enthalpies of solution of thymine and uracil in water and in dimethylsulfoxide (DMSO) were measured calorimetrically in the temperature range 25–40°C. H s o at 25°C for thymine and uracil in water were found to be 23.1±0.5 and 29.5±0.3 kJ-mol–1, respectively. In DMSO, H s o were 7.9±0.1 and 10.2±0.1 kJ-mol–1, respectively. In aqueous solution C p o for the two nucleic acid bases were relatively large and positive with C p o of thymine being larger. Both transfer quantities H t o and C p,t o for the proceses H2ODMSO for the two nucleic acid bases were negative. It is proposed that, the differences in the values obtained for the two bases is due principally to increased order in the water adjacent to the methyl group in thymine.  相似文献   

17.
Complexation stoichiometries and formation constants of tri- and tetra-protonated forms of 1,4,8,12-tetraazacyclopentadecane with NO 3 , Cl, IO 3 and SO 4 2– ions are determined by pH potentiometric and13C NMR spectrometric measurements. Estimates of H and S are obtained from the values of the temperature dependent formation constants and acid dissociation constants. All four anions form only 1 : 1 complexes with the triprotonated amine species. NO 3 and Cl form 1 : 1 complexes only with the tetraprotonated amine, while IO 3 and SO 4 2– form both 1 : 1 and 2 : 1 complexes. The complexation behavior is interpreted in terms of solvation and internal hydrogen bonding interactions.  相似文献   

18.
Investigation of the aqueous lithium and magnesium halide systems   总被引:1,自引:0,他引:1  
The solubilities of the system LiBr–MgBr2–H2O have been investigated at 25°C and 50°C. It is established that the system is of a simple eutonic type. Pitzer's model is used for calculating the thermodynamic functions needed for plotting the solubility isotherms of the systems LiX–MgX2–H2O (X=Cl, Br) at 25°C. According to calculations made, the Gibbs energy of formation of LiCl·MgCl2·7H2O from simple salts is rm=–2.01 kJ-mol–1, while the value fm=–2748 kJ-mol–1 corresponds to formation from the elements.  相似文献   

19.
The equilibrium quotient for the formation of triiodide was studied as a function of temperature, 3.8–209.0°C, and ionic strength, 0.02–6.61. The best-fit value for the molal equilibrium constant at 25°C is 698±10 and the corresponding partial molal enthalphy, entropy, and heat capacity of formation are: Ho=–17.0±0.6 kJ-mol–1, So=–0.6±0.3 J-K–1-mol–1, and C p o =–21±8 J-K–1-mol–1. Activity coefficients of iodine were determined as a function of ionic strength (NaClO4) at 25°C and conclusions are drawn as to the corresponding ionic strength dependence of the triiodide anion.  相似文献   

20.
Summary The vibrational spectra of solutions have been analyzed to assess both qualitatively and quantitatively the changes in enthalpy and entropy for ion pair formation in solutions of LiNCS, Mg(NCS)2, and LiN3 in liquid ammonia, dimethylformamide, dimethylsulphoxide and acetonitrile. Contrary to predictions both the H ass and S ass terms are all positive in the cases examined, indicating that the driving force in the ion association process derives from solvent-solute restructuring, and not the energy of the interaction between the cation and anion. This characteristic of contact ion pair formation is likely to be found to be applicable over a wide range of solvents. The following specific values of the thermodynamic parameters at 298 K have been obtained: LiNCS/DMF, G=–1.3 (1) kJ mol–1, H ass =+1.8 (5) kJ mol, S ass =+10 (2) J mol–1 K–1; LiNCS/DMSO, G=+0.9 (2) kJ mol–1, H ass =+0.3 (3) kJ mol–1; Mg(NCS)2/DMF, G ass =–4.0 (3) kJ mol–1, H ass =+15 (4) kJ mol–1, S=+64 (17) kJ mol–1; LiN3/DMSO, G ass =–2.5 (3) kJ mol–1, H ass =+4.9 (9) kJ mol–1, S ass =+25 (10) J K–1 mol–1.Submitted to celebrate the 70th Birthday of Professor Viktor Gutmann, and in recognition of his considerable contributions towards the better understanding of Chemistry in the Solution Phase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号