首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Potential energy surfaces for the low-lying states of osmium carbon monoxide (OsCO) have been studied using the complete active space multi-configuration self-consistent field (CAS-MCSCF) followed by multireference singles+doubles configuration interaction (MRSDCI). Additionally, spin–orbit effects were included through the relativistic configuration interaction method. It is found that the ground state of OsCO is an 0+ spin–orbit state which is a mixture of 3Σ and 1Σ+. Spin–orbit coupling not only splits the various electronic states of OsCO but also mixes different electronic states.  相似文献   

2.
The influence of relativistic effects on the properties of uranium hexafluoride was considered. Detailed comparison of the spectrum of one-electron energies obtained in the nonrelativistic (by the Hartree-Fock method), relativistic (by the Dirac-Fock method), and scalar-relativistic (using a relativistic potential of the uranium atom core) calculations was carried out. The methods of optimization of atomic basis in the LCAO calculations of molecules and crystals are discussed which make it possible to consider distortion of atomic orbitals upon the formation chemical bonds. The influence of the atomic basis optimization on the results of scalar-relativistic calculations of the molecule UF6 properties is analyzed. Calculations of the electronic structure and properties of UO2 crystals with relativistic and nonrelativistic pseudopotentials are fulfilled.  相似文献   

3.
MCH2 systems, where M is a metal from 4th up to 7th period, are studied at DFT level using B3LYP functional and small-core quasirelativistic pseudopotential or fully relativistic four-component methodology. We obtained structural data for 44 elements, M, and our results can be used to infer double-bond lengths for these elements. Our results also suggest that the bonding of these MCH2 systems can be understood by a simple pictorial approach, even when spin–orbit effects are present.  相似文献   

4.
Summary.  Using the quadratic response function at the ab initio SCF level of approximation we have calculated the relativistic corrections from the spin–orbit Hamiltonian, H SO, to the indirect nuclear spin–spin coupling constants of XH4 (X=C, Si, Ge, and Sn). We find that the spin–orbit contributions to J X–H are small, amounting only to about 1% for J Sn–H. For the geminal H–H coupling constants the relativistic corrections are numerically smaller than for J X–H, but in some cases relatively larger compared to the actual magnitude of J H–H. We also investigate the use of an effective one-electron spin–orbit Hamiltonian rather than the full H SO in the calculation of these corrections. Received July 12, 1996 / Final revision received September 12, 1996 / Accepted September 17, 1996  相似文献   

5.
The electronic structure of the Ca2 molecule has been investigated by use of a two-valence-electron semiempirical pseudopotential and applying the internally contracted multireference configuration interaction method with complete-active-space self-consistent-field reference wave functions. Core–valence correlation effects have been accounted for by adding a core-polarization potential to the Hamiltonian. The ground-state properties of the Ca2 and Ca2+ dimers have also been studied at the single-reference coupled-cluster level with single and double excitations including a perturbative treatment of triple excitations. Good agreement with experiment has been obtained for the ground-state potential curve and the only experimentally known A1u+ excited state of Ca2. The spectroscopic parameters De and Re deduced from the calculated potential curves for other states are also reported. In addition, spin–orbit coupling between the singlet and triplet molecular states correlating, respectively, with the (4p)1P and (4p)3P Ca terms has been investigated using a semi-empirical two-electron spin–orbit pseudopotential. Acknowledgement.This work was supported by grant 5 P03B 082 21 from the Polish State Committee for Scientific Research (KBN).  相似文献   

6.
The coordination and bonding effects of equatorial ligands such as fluoride (F), chloride (Cl), cyanide (CN), isocyanide (NC), and carbonate (CO3−2) on uranyl dication (UO22+) has been studied using relativistic density functional theory. The ZORA Hamiltonian was applied for the inclusion of relativistic effects taking into account all the electrons for the optimization and the explicit inclusion of spin–orbit coupling effects. Geometry optimizations including the counterions and frequencies analysis were carried out with PW91 and PBE functional. Solvents effects were considered by using the conductor like screening model (COSMO) for water and acetonitrile. The Time-Dependent Density Functional Theory (TDDFT) was used to calculate the excitation energies with GGA SAOP functional and the electronic transitions were analyzed using double group irreducible representations. The theoretical results are in a good agreement with experimental IR, Raman and EXAFS spectra and previous theoretical results. New information about the effect of different (donor and acceptors) ligands on the bonding of uranyl ion and on the electronic transitions involved in these complexes is provided with a possible impact on the understanding of the uranyl coordination chemistry.  相似文献   

7.
The nature of halogen-bond interactions was scrutinized from the perspective of astatine, potentially the strongest halogen-bond donor atom. In addition to its remarkable electronic properties (e.g., its higher aromaticity compared to benzene), C6At6 can be involved as a halogen-bond donor and acceptor. Two-component relativistic calculations and quantum chemical topology analyses were performed on C6At6 and its complexes as well as on their iodinated analogues for comparative purposes. The relativistic spin–orbit interaction was used as a tool to disclose the bonding patterns and the mechanisms that contribute to halogen-bond interactions. Despite the stronger polarizability of astatine, halogen bonds formed by C6At6 can be comparable or weaker than those of C6I6. This unexpected finding comes from the charge-shift bonding character of the C–At bonds. Because charge-shift bonding is connected to the Pauli repulsion between the bonding σ electrons and the σ lone-pair of astatine, it weakens the astatine electrophilicity at its σ-hole (reducing the charge transfer contribution to halogen bonding). These two antinomic characters, charge-shift bonding and halogen bonding, can result in weaker At-mediated interactions than their iodinated counterparts.  相似文献   

8.
Quantum chemical studies employing combined density functional and multireference configuration interaction methods suggest five excited electronic states to be involved in the prompt and delayed fluorescence emission of TpAT-tFFO. Three of them, a pair of singlet and triplet charge transfer (CT) states (S1 and T1) and a locally excited (LE) triplet state (T3), can be associated with the (Me → N) conformer, the other two CT-type states (S2 and T2) form the lowest excited singlet and triplet states of the (Me → Ph) conformer. The two conformers, which differ in essence by the shearing angle of the face-to-face aligned donor and acceptor moieties, are easily interconverted in the electronic ground state whereas the reorganization energy is substantial in the excited singlet state, thus explaining the two experimentally observed time constants of prompt fluorescence emission. Forward and reverse intersystem crossing between the singlet and triplet CT states is mediated by vibronic spin–orbit interactions involving the LE T3 state. Low-frequency vibrational modes altering the distance and alignment of the donor and acceptor π-systems tune the S1 and T3 states (likewise S2 and T3) into and out of resonance. The enhancement of intersystem crossing due to the interplay of vibronic and spin–orbit coupling is considered a general feature of organic through-space charge-transfer thermally activated delayed fluorescence emitters.

DFT/MRCI quantum chemical studies suggest five excited electronic states to be involved in the prompt and delayed fluorescence emission of TpAT-tFFO.  相似文献   

9.
Relativistic and non-relativistic Hartree-Fock calculations including np and np and (n-1)d orbitals in the valence MO's are reported for the tetrahedral model systems TiH4, ZrH4, HfH4 and (104)H4. About 50%p and 50%d character is found, making the relativistic effects on the bond lengths and strengths one order of magnitude smaller than for the groups Ib, IIIb or IVb. This probably explains the close chemical similarity between Zr and Hf. The Ti---H bond length agrees with experiment. Inverted spin—orbit splitting is found to TiH4.  相似文献   

10.
We have calculated solvent effects on the zero-field splitting (ZFS) constants induced by electron spin–spin coupling (SSC) in the low-lying triplet states of azaaromatic molecules in solutions using multiconfiguration self-consistent-field wave functions and the polarizable continuum model. The second-order spin–orbit coupling (SOC) contribution to the splitting of the 3* states is found to be almost negligible, and the calculations therefore provide a good estimate of the ZFS parameters and their solvent dependence based only on the electron spin–spin coupling expectation values. The correlation between the shift in the ZFS and the phosphorescence frequency that has been observed in optically detected magnetic resonance experiments in low-temperature glasses is supported by our direct SSC calculations without taking SOC into account. This makes it possible to distinguish between the two theories that earlier were proposed to explain the inhomogeneous broadening of triplet state spectra, and discard the one that is exclusively based on the SOC-induced mixing of the singlet and triplet states.Contribution to the Jacopo Tomasi Honorary IssueAcknowledgments. This work was supported (B. M.) by the Swedish Royal Academy of Science (KVA). This work was also supported by the Norwegian Research Council through a grant of computer time from the Program for Supercomputing. We are grateful to B. Schimmelpfenning for his valuable assistance in the computations.  相似文献   

11.
12.
The electronic structure and bonding of UF6 and UF6 are studied within a relativistic framework using the MOLFDIR program package. A stronger bonding but more ionic molecule is found if one compares the relativistic with the nonrelativistic results. The first peak in the photoelectron spectrum of Karlsson et al. is assigned to the 12γ8u component of the 4t1u orbital, in agreement with other theoretical and experimental results. Good agreement is found between the experimental and theoretical 5f spectrum UF6. Some properties, like the dissociation energy and electron affinity, are calculated and the necessity of a fully relativistic framework is shown. The Breit interaction has an effect on the core spinors and the spin-orbit splitting of these spinors but the influence on the valence spectrum is negligible. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
By using a set of model reactions, we estimated the heat of formation of gaseous UO22+ from quantum‐chemical reaction enthalpies and experimental heats of formation of reference species. For this purpose, we performed relativistic density functional calculations for the molecules UO22+, UO2, UF6, and UF5. We used two gradient‐corrected exchange‐correlation functionals (revised Perdew–Burke–Ernzerhof (PBEN) and Becke–Perdew (BP)) and we accounted for spin‐orbit interaction in a self‐consistent fashion. Indeed, spin‐orbit interaction notably affects the energies of the model reactions, especially if compounds of UIV are involved. Our resulting theoretical estimates for Δf (UO22+), 365±10 kcal mol?1 (PBEN) and 370±12 kcal mol?1 (BP), are in quantitative agreement with a recent experimental result, 364±15 kcal mol?1. Agreement between the results of the two different exchange‐correlation functionals PBEN and BP supports the reliability of our approach. The procedure applied offers a general means to derive unknown enthalpies of formation of actinide species based on the available well‐established data for other compounds of the element in question.  相似文献   

14.
Strong electron correlation plays an important role in transition-metal and heavy-metal chemistry, magnetic molecules, bond breaking, biradicals, excited states, and many functional materials, but it provides a significant challenge for modern electronic structure theory. The treatment of strongly correlated systems usually requires a multireference method to adequately describe spin densities and near-degeneracy correlation. However, quantitative computation of dynamic correlation with multireference wave functions is often difficult or impractical. Multiconfiguration pair-density functional theory (MC-PDFT) provides a way to blend multiconfiguration wave function theory and density functional theory to quantitatively treat both near-degeneracy correlation and dynamic correlation in strongly correlated systems; it is more affordable than multireference perturbation theory, multireference configuration interaction, or multireference coupled cluster theory and more accurate for many properties than Kohn–Sham density functional theory. This perspective article provides a brief introduction to strongly correlated systems and previously reviewed progress on MC-PDFT followed by a discussion of several recent developments and applications of MC-PDFT and related methods, including localized-active-space MC-PDFT, generalized active-space MC-PDFT, density-matrix-renormalization-group MC-PDFT, hybrid MC-PDFT, multistate MC-PDFT, spin–orbit coupling, analytic gradients, and dipole moments. We also review the more recently introduced multiconfiguration nonclassical-energy functional theory (MC-NEFT), which is like MC-PDFT but allows for other ingredients in the nonclassical-energy functional. We discuss two new kinds of MC-NEFT methods, namely multiconfiguration density coherence functional theory and machine-learned functionals.

This feature article overviews recent work on active spaces, matrix product reference states, treatment of quasidegeneracy, hybrid theory, density-coherence functionals, machine-learned functionals, spin–orbit coupling, gradients, and dipole moments.  相似文献   

15.
Cadmium phthalocyanines (Pc) give rise to multilayered compounds, which may have potential application in material science. The Cd(II) single macrocycle (1) (C4v), double decker [CdPc2] (2) (D4), triple decker [Cd2Pc3] (3) (D4h) and quadruple decker [Cd3Pc4] (4) (D4d), are already characterized experimentally. The electronic structures of the multidecker compounds were compared against the single macrocycle (1) which is used as benchmark. Relativistic electronic structure were carried out via DFT calculations using the two components ZORA Hamiltonian including both scalar and spin–orbit effects. Double point groups were used to take into account the inclusion of the spin–orbit coupling, and their group correlation is shown. The calculations show that the quadruple decker is the most reactive and behaves like a one-dimensional molecular metal.  相似文献   

16.
The relativistic ground and low-lying excited state potential energy curves of AgH and AuH in the presence of a cylindrical harmonic confining potential were calculated using the multi-state multi-reference perturbation theory with the spin-free no-pair Hamiltonian obtained via the third-order Douglas–Kroll transformation, incorporated with the full two-electron Breit–Pauli spin–orbit operator. The spectroscopic parameters were obtained for both the scalar- and quasi-relativistic potentials. The spin–orbit coupling constants were calculated for several strengths of the confining potential, and the effects of the applied potential on the coupling constants were analyzed using configuration interaction. This paper is dedicated to Serafín Fraga—colleague, mentor, and friend.  相似文献   

17.
The electric dipole moment and the static dipole polarizability of the hydrogen iodide molecule were studied using sophisticated correlated and relativistic methods. Both scalar and spin–orbit relativistic effects were carefully accounted for. We conclude that the large differences between the theoretical and experimental dipole moment, the dipole moment derivative and the polarizability cannot be reconciled by improved account of electron correlation and relativistic effects. The most striking difference between theory and experiment is observed for the polarizability anisotropy. We believe that experimental data, namely the experimental dipole moment (the most recent value is 0.176 au as compared to our best theoretical estimate, 0.154±0.003 au), the parallel polarizability (44.4 and 38.47±0.05 au) and the anisotropy (11.4 and 2.33±0.05 au) must be inaccurate. Experimental and theoretical perpendicular polarizability components (33.0 and 36.14±0.05 au,) and the mean polarizability (36.8 and 36.92±0.05 au) agree better. Our vibrationally corrected relativistic CCSD(T) results represent the most sophisticated predictions of electric properties of HI obtained so far.Contribution to the Björn Roos Honorary Issue  相似文献   

18.
《Chemical physics》1986,101(3):355-369
A charge-consistent version of the relativistic extended Hückel method REX is presented. The diagonal matrix elements are corrected for occupations of individual orbitals on the same atom using derivatives from atomic Dirac-Slater calculations and for external charges. The method is applied to systems containing the heavy atoms Xe, Th and U. For the XeFn series (n = 2, 4, 6) the charge distributions improved compared to the non-iterative version of REX and the new results are close to non-relativistic ab initio SCF results. Bonding in the uranyl ion is discussed. The EHT-level explanations for the linear geometry by Tatsumi and Hoffmann nd by Pyykkö and Lohr are shown to be identical. The effect of secondary ligands is discussed. The role of the 6p AOs in actinoid nuclear quadrupole coupling in the actinyls is pointed out. The XPS of UF6 is explained by different amounts of 5f character in the split components of the t1u HOMO.  相似文献   

19.
Relativistic calculations of the low-lying electronic states of the ZnO molecule are performed for the Λ–Σ states, 1Σ+, 1Π, 1Δ, 3Π and 3Σ, at the CCSD(T) or MRCI level, using scalar relativistic energy-consistent pseudopotentials, and the EPCISO method for spin–orbit CI coupling. The ZnO ground state is assigned to 0+ symmetry and has 1Σ+ character around the equilibrium region. The spectroscopic constants (re, ωe) of the 0+ ground state are in good agreement with experimental results. Interpenetration of the vibrational levels of the two lowest 0+ states is also shown.  相似文献   

20.
The accuracy of the hyperfine integrals obtained in relativistic NMR computations based on the zeroth–order regular approximation (ZORA) is investigated. The matrix elements of the Fermi contact operator and its relativistic analogs for s orbitals obtained from numerical nonrelativistic, ZORA, and four–component Hartree–Fock–Slater calculations on atoms are compared. It is found that the ZORA yields very accurate hyperfine integrals for the valence shells of heavy atoms, but performs rather poorly for the innermost core shells. Because the important observables of the NMR experiment—chemical shifts and spin–spin coupling constants—can be understood as valence properties it is concluded that ZORA computations represent a reliable tool for the investigations of these properties. On the other hand, absolute shieldings calculated with the ZORA might be substantially in error. Because applications to molecules have so far exclusively been based on basis set expansions of the molecular orbitals, ZORA hyperfine integrals obtained from atomic Slater-type basis set computations for mercury are compared with the accurate numerical values. It is demonstrated that the core part of the basis set requires functions with Slater exponents only up to 104 in the case where errors in the hyperfine integrals of a few percent are acceptable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号