首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Putative global energy minima of clusters formed by the adsorption of rare gases on a C(60) fullerene molecule, C(60)X(N) (X=Ne, Ar, Kr, Xe; N ≤ 70), are found using basin-hopping global optimization in an empirical potential energy surface. The association energies per rare gas atom as a function of N present two noticeable minima for Ne and Ar and just one for Kr and Xe. The minimum with the smallest N is the deepest one and corresponds to an optimal packing monolayer structure; the other one gives a monolayer with maximum packing. For Kr and Xe, optimal and maximum packing structures coincide. By using an isotropic average form of the X-C(60) interaction, we have established the relevance of the C(60) surface corrugation on the cluster structures. Quantum effects are relevant for Ne clusters. The adsorption of these rare gases on C(60) follows patterns that differ significantly from the ones found recently for He by means of experimental and theoretical methods.  相似文献   

2.
A new approach for obtaining an estimate of the effective size of the free neutral clusters is proposed. The approach relies on an experimental measure of the surface and interior or "bulk" cluster atoms provided by the x-ray photoelectron spectroscopy and on a model for the attenuation of photoelectrons ejected from the bulk of the cluster as the result of the ionizing irradiation. The experimental part gives the ratio of the electron signal from the bulk cluster atoms to that from the cluster surface atoms for a wide range of cluster sizes and electron kinetic energies. The attenuated response of the bulk atoms is modeled using an exponential law with the cluster size and kinetic-energy-dependent electron escape depth as parameters. For the experimental size range, model-based calculations for Ar, Kr, and Xe clusters are presented. The cluster size estimates obtained from comparison of the model calculations and experimental results agree well with those determined from the parameters of the cluster creation process. The combination of experiment and modeling also makes it possible to estimate the effective escape depth for electron propagation in free clusters. For Ar, Kr, and Xe clusters of varying mean size, absolute determination of the surface and bulk electron binding energies of the core levels used in the experiments has also been made.  相似文献   

3.
We have used a replica exchange Monte‐Carlo procedure, popularly known as Parallel Tempering, to study the problem of Coulomb explosion in homogeneous Ar and Xe dicationic clusters as well as mixed Ar–Xe dicationic clusters of varying sizes with different degrees of relative composition. All the clusters studied have two units of positive charges. The simulations reveal that in all the cases there is a cutoff size below which the clusters fragment. It is seen that for the case of pure Ar, the value is around 95 while that for Xe it is 55. For the mixed clusters with increasing Xe content, the cutoff limit for suppression of Coulomb explosion gradually decreases from 95 for a pure Ar to 55 for a pure Xe cluster. The hallmark of this study is this smooth progression. All the clusters are simulated using the reliable potential energy surface developed by Gay and Berne (Gay and Berne, Phys. Rev. Lett. 1982, 49, 194). For the hetero clusters, we have also discussed two different ways of charge distribution, that is one in which both positive charges are on two Xe atoms and the other where the two charges are at a Xe atom and at an Ar atom. The fragmentation patterns observed by us are such that single ionic ejections are the favored dissociating pattern. © 2017 Wiley Periodicals, Inc.  相似文献   

4.
Structures of small mixed krypton-xenon clusters of different compositions with an average size of 30-37 atoms are investigated. The Kr 3d(5/2) and Xe 4d(5/2) surface core level shifts and photoelectron intensities originating from corner, edge, and face/bulk sites are analyzed by using soft x-ray photoelectron spectroscopy. Structural models are derived from these experiments, which are confirmed by theoretical simulation taking induced dipole interactions into account. It is found that one or two small Xe cores are partly embedded in the surface of the Kr clusters. These may grow and merge leading to a phase separation between the two rare gas moieties in mixed clusters with increasing the Xe content.  相似文献   

5.
The IR absorption spectra of CH3F doped Ar, Kr and Xe solutions have been recorded near the melting point. The full widths at half maximum of fundamental bands increase noticeably after crystallization of the Xe and Kr solutions. A slight narrowing of the bands is observed just below the freezing point of the Ar solution. Treated in the framework of the Debye model for the J-diffusion of a symmetric top rotation, the results suggest a weaker perturbation of rotational motion of CH3F in the ordered Xe and Kr solids at least near the freezing point. At the same time, molecular rotation becomes more hindered when going to solid Ar. The broadening effect has been found to correlate with a hopping increase of the vibrational energy relaxation time, measured by the IR-IR double resonance method.  相似文献   

6.
In the present work, we have studied ion-pair states of matrix-isolated I(2) with vacuum-UV absorption and UV-vis-NIR emission, where the matrix environment is systematically changed by mixing Kr with Xe, from pure Kr to a more polarizable Xe host. Particular emphasis is put on low doping levels of Xe that yield a binary complex I(2)-Xe, as verified by coherent anti-Stokes Raman scattering (CARS) measurements. Associated with interaction of I(2) with Xe we can observe strong new absorption in vacuum-UV, redshifted 2400 cm(-1) from the X → D transition of I(2). Observed redshift can be explained by symmetry breaking of ion-pair states within the I(2)-Xe complex. Systematic Xe doping of Kr matrices shows that at low doping levels, positions of I(2) ion-pair emissions are not significantly affected by complexation with Xe, but simultaneous increase of emissions from doubly spin-excited states indicates non-radiative relaxation to valence states. At intermediate doping levels ion-pair emissions shift systematically to red due to change in the average polarizability of the environment. We have conducted spectrally resolved ultrafast pump-probe ion-pair emission studies with pure and Xe doped Kr matrices, in order to reveal the influence of Xe to I(2) dynamics in solid Kr. Strikingly, relaxed emission from the ion-pair states shows no indication of complex presence. It further indicates that the complex escapes detection due to a non-radiative relaxation.  相似文献   

7.
Toluene-X van der Waals clusters (where X = Ne, Ne2, Ar, Ar2, Kr, Xe) have been investigated by fluorescence excitation spectroscopy in the region of the S1-S0 transition. With the exception of Xe, for each rare-gas studied, we have assigned cluster transitions in the region of all the strong monomer vibrational bands up to 1000 cm(-1) above the origin band. We have further investigated the S1 relaxation dynamics for each vibrational level of each complex, via their fluorescence decay profiles. Clustering with neon has little appreciable effect on the vibrationless S1 lifetime. By contrast, the clusters with argon and krypton exhibit markedly shorter fluorescence lifetimes compared with the monomer. The effect is so severe in the case of toluene-Xe clusters that no fluorescence signals were observed. We interpret these results in terms of an external heavy atom effect in which the rate of intersystem crossing in toluene is influenced by the cluster partner. For clusters built upon excited S1 vibrational levels, the situation is potentially complicated by intramolecular vibrational redistribution and vibrational predissociation (VP). The majority of the fluorescence decay profiles were satisfactorily modeled using single exponential decays. The emission following pumping of the 37(1) level in the toluene-Kr cluster, however, is an exception. We have modeled the decay of this level with a simple kinetic scheme including VP and determined a predissociation rate of (1.04 +/- 0.54) x 10(7) s(-1).  相似文献   

8.
9.
We have observed infrared spectra of the SO2 clusters in rare gas matrices (Ar, Kr, Xe). The spectral dependence on temperature and concentration led us to the firm assignment of the SO2 dimer in Kr and Xe, the result of which was used to reassign dimeric vibrational transitions in Ar that have been controversial for more than ten years.  相似文献   

10.
The polarizability anisotropies of homonuclear rare gas diatomic molecules, Ar(2), Kr(2), and Xe(2), are investigated by utilizing the interaction of the induced electric dipole moment with a nonresonant, nanosecond laser pulse. The degree of alignment, which depends on the depth of the interaction potential created by the intense laser field, is measured, and is found to increase in order of Ar(2), Kr(2), and Xe(2) at the same peak intensity. Compared with a reference I(2) molecule, Ar(2), Kr(2), and Xe(2) are found to have the polarizability anisotropies of 0.45 ± 0.13, 0.72 ± 0.13, and 1.23 ± 0.21 A?(3), respectively, where the uncertainties (one standard deviation) in the polarizability anisotropies are carefully evaluated on the basis of the laser intensity dependence of the degree of alignment. The obtained values are compared with recent theoretical calculations and are found to agree well within the experimental uncertainties.  相似文献   

11.
HXeCCH molecule is prepared in Ar and Kr matrices and characterized by IR absorption spectroscopy. The experiments show that HXeCCH can be made in another host than the polarizable Xe environment. The H-Xe stretching absorption of HXeCCH in Ar and Kr is blueshifted from the value measured in solid Xe. The maximum blueshifts are +44.9 and +32.3 cm(-1) in Ar and Kr, respectively, indicating stabilization of the H-Xe bond. HXeCCH has a doublet H-Xe stretching absorption measured in Xe, Kr, and Ar matrices with a splitting of 5.7, 13, and 14 cm(-1), respectively. Ab initio calculations for the 1:1 HXeCCHcdots, three dots, centeredNg complexes (Ng = Ar, Kr, or Xe) are used to analyze the interaction of the hosts with the embedded molecule. These calculations support the matrix-site model where the band splitting observed experimentally is caused by specific interactions of the HXeCCH molecule with noble-gas atoms in certain local morphologies. However, the 1:1 complexation is unable to explain the observed blueshifts of the H-Xe stretching band in Ar and Kr matrices compared to a Xe matrix. More sophisticated computational approach is needed to account in detail the effects of solid environment.  相似文献   

12.
Following our recent study on Ng-Pt-Ng (Ng=Ar,Kr,Xe) [J. Chem. Phys. 123, 204321 (2005)], the binding of noble-gas atoms with Pd atom has been investigated by the ab initio coupled cluster CCSD(T) method with counterpoise corrections, including relativistic effects. It is shown that two Ng atoms bind with Pd atom in linear geometry due to the s-d(sigma) hybridization in Pd where the second Ng atom attaches with much larger binding energy than the first. The binding energies are evaluated as 4.0, 10.2, and 21.5 kcalmol for Ar-Pd-Ar, Kr-Pd-Kr, and Xe-Pd-Xe, respectively, relative to the dissociation limit, Pd ((1)S)+2Ng. In the hybrid Ng complexes, the binding energies for XePd and Ng (=Ar,Kr) are evaluated as 4.0 and 6.9 kcalmol for XePd-Ar and XePd-Kr, respectively. The fundamental frequencies and low-lying vibrational-rotational energy levels are determined for each compound by the variational method, based on the three-dimensional near-equilibrium potential energy surface. Results of vibrational-rotational analyses for Ng-Pt-Ng (Ng=Ar,Kr,Xe) and Xe-Pt-Ng (Ng=He,Ne,Ar,Kr) compounds are also given.  相似文献   

13.
The combination of matrix isolation infrared spectroscopic and quantum chemical calculation results provide strong evidence that scandium and yttrium monoxide cations, ScO+ and YO+, coordinate multiple noble gas atoms in forming noble gas complexes. The results showed that ScO+ coordinates five Ar, Kr, or Xe atoms, and YO+ coordinates six Ar or Kr and five Xe atoms in solid noble gas matrixes. Hence, the ScO+ and YO+ cations trapped in solid noble gas matrixes should be regarded as the [ScO(Ng)5]+ (Ng = Ar, Kr, or Xe), [YO(Ng)6]+ (Ng = Ar or Kr) or [YO(Xe)5]+ complexes. Experiments with dilute krypton or xenon in argon or krypton in xenon produced new IR bands, which are due to the stepwise formation of the [ScO(Ar)(5-n)(Kr)n]+, [ScO(Kr)(5-n)(Xe)n]+ (n = 1-5), [YO(Ar)(6-n)(Kr)n]+ (n = 1-6), and [YO(Ar)(6-n)(Xe)n]+ (n = 1-4) complexes.  相似文献   

14.
The fragmentation of the small Xen n=2−5 clusters following 70 eV electron impact ionization has been investigated in a size selective experiment and simulated using non-adiabatic dynamics. The experimental results show that the clusters strongly fragment to yield monomer Xe+ (more than 90%) and dimer Xe2+ fragments (the remaining few percent). Trimer Xe3+ fragments first occur from the neutral pentamers Xe5 in a very low yield of approximately 0.3%. The present results are compared with the previous ones for Kr and Ar clusters. It is shown that the Xe and Kr clusters exhibit a qualitatively similar behavior with a strong propensity for monomer fragments, while in the Ar case dimers prevail. The theoretical calculations also reveal a strong fragmentation to the dimer and monomer fragments. However, the dimer Rg2+ is predicted to be the major product for all rare gases (Rg ≡ Ar, Kr, Xe). Possible reasons for the discrepancy between theory and experiment are discussed.  相似文献   

15.
The surface and bulk components of the x-ray photoelectron spectra of free noble gas clusters are shown to display differences in the influence of postcollision interaction between the photoelectron and the Auger electron on the spectral line shape; the bulk component is observed to be less affected than the surface and atomic parts of the spectra. A model for postcollision interaction in nonmetallic solids and clusters is also provided which takes the polarization screening into account. Core-level photoelectron spectra of Ar, Kr, and Xe have been recorded to verify the dependence of the postcollision interaction effect on the polarizability of the sample.  相似文献   

16.
Molecular dynamics calculations have been performed to simulate the low energy collision (0.2 eV) of a rare gas atom (He, Ar, Xe) with a cluster of 125 argon atoms. Depending on its relative mass to argon, the projectile is either deflected (He) or captured (Ar, Xe) by the argon cluster. We have determined the deflection function of the He projectile that is scattered, and for Xe we have determined wether it stays near the surface of the cluster or migrates inside. These results have been discussed in the light of very simple models.  相似文献   

17.
Multiple-ion coincidence momentum imaging experiments were carried out for K-shell (1s) excited Ar clusters containing about 130 atoms and Kr clusters containing about 30, 90, and 160 atoms. The time-of-flight spectra reveal that the major products of the Coulomb explosion are singly charged ions. With increasing the number of charges generated in clusters, the momentum of monomer ions such as Ar(+) and Kr(+) increases, while that of cluster ions such as Ar(3) (+), Kr(2) (+), and Kr(3) (+) decreases. This observation indicates the site-specific decay process that the heavier ions appear in the central part of clusters. We have also investigated the momentum distribution in various fragmentation channels and the branching ratio of each channel at the Coulomb explosion. When the number N(coin) of coincidently detected ions is four, for example, the most frequent channel from Kr clusters containing 30 atoms is to emit simply four Kr(+) ions, but Kr(2) (+) ions participate in the fragmentation from the larger Kr clusters. The fragmentation channel in which two Ar(2) (+) ions are emitted becomes dominant with increasing N(coin), and the average momentum of Ar(2) (+) ion in this channel is larger than that in the channels where only single Ar(2) (+) is emitted.  相似文献   

18.
Removal of xenon (Xe) and krypton (Kr) from process off-gases containing 400 ppm Xe, 40 ppm Kr, 78% N(2), 21% O(2), 0.9% Ar, 0.03% CO(2), and so forth using adsorption was demonstrated for the first time. Two well-known metal-organic frameworks (MOFs), HKUST-1 and Ni/DOBDC, which both have unsaturated metal centers but different pore morphologies, were selected as novel adsorbents. Results of an activated carbon were also included for comparison. The Ni/DOBDC has higher Xe/Kr selectivities than those of the activated carbon and the HKUST-1. In addition, results show that the Ni/DOBDC and HKUST-1 can adsorb substantial amounts of Xe and Kr even when they are mixed in air. Moreover, the Ni/DOBDC can successfully separate 400 ppm Xe from 40 ppm Kr and air containing O(2), N(2), and CO(2) with a Xe/Ke selectivity of 7.3 as indicated by our breakthrough results. This shows a promising future for MOFs in radioactive nuclide separations from spent fuels.  相似文献   

19.
We have carried out parallel tempering Monte Carlo calculations on the binary six-atom mixed Lennard-Jones clusters, Ar(n)Xe(6-n) (n=0,1,2). We have looked at the classical configurational heat capacity C(V)(T) as a probe of phase behavior. All three clusters show a feature in the heat capacity in the region of 15-20 K. The Ar(2)Xe(4) cluster exhibits a further peak in the heat capacity near 7 K. We have also investigated dynamical properties of the Ar(2)Xe(4) cluster as a function of temperature using molecular dynamics. We report the interbasin isomerization rate and the bond fluctuation parameter obtained from these calculations. At 7 K, the isomerization rate is on the order of 0.01 ns(-1); at 20 K, the isomerization rate is greater than 10 ns(-1). Furthermore, at 7 K, the bond fluctuation parameter is less than 3%; at 20 K, it is in the range of 10-15% (depending on the sampling time used). Using this information, together with Monte Carlo quenching data, we assign the 15-20 K feature in the heat capacity to a solid-liquid phase change and the 7-K peak to a solid-solid phase change. We believe this is the smallest Lennard-Jones cluster system yet shown to exhibit solid-solid phase change behavior.  相似文献   

20.
The structural stability and physical properties have been studied for carbon-(silicon-) doped La(13) clusters using DMOL method based on density-functional theory. Doped La(13) clusters prefer to be icosahedron. Substitutional doping with a carbon or silicon impurity makes some clusters closed electronic shell, especially in icosahedral isomers. Substitutional doping of icosahedral La(13) clusters is found to be favorable at surface sites of clusters, especially for Si-doped La(13) cluster, which is very likely to be formed during the doping process. In addition, the structural distortions due to the doping are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号