首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Two-dimensional (129)Xe exchange spectroscopy (EXSY) NMR measurements are presented for xenon atoms dissolved in a thermotropic nematic Liquid Crystal (LC), Merck Phase 4, confined to a mesoporous Controlled-Pore Glass (CPG) material with an average pore diameter of 81 A. Experiments were carried out as a function of mixing time at two different temperatures in which Phase 4 appears in nematic and isotropic phases. The exchange rate constants of xenon atoms between two different sites were determined utilizing the intensities of diagonal and off-diagonal signals measured in the EXSY spectra. In the studied system, the sites are: (a) xenon dissolved in the bulk LC between the CPG particles; and (b) xenon in the LC confined inside the pores. The diffusion rate of xenon atoms between the various sites was observed to be very slow.  相似文献   

2.
Xenon porometry is a method in which porous material is immersed in a medium and the properties of the material are studied by means of 129Xe nuclear magnetic resonance (NMR) of xenon gas dissolved in the medium. For instance, the chemical shift of a particular signal (referred to as signal D) arising from xenon inside small pockets formed in the pores during the freezing of the confined medium is highly sensitive to the pore size. In the present study, we show that when naphthalene is used as the medium the pore size distribution of the material can be determined by measuring a single one-dimensional spectrum near room temperature and converting the chemical shift scale of signal D to the pore radius scale by using an experimentally determined correlation. A model has been developed that explains the curious behavior of the chemical shift of signal D as a function of pore radius. The other signals of the spectra measured at different temperatures have also been identified, and the influence of xenon pressure on the spectra has been studied. For comparison, 129Xe NMR spectra of pure xenon gas adsorbed to porous materials have been measured and analyzed.  相似文献   

3.
129Xe NMR spectra of xenon dissolved in acetonitrile confined into three mesoporous silica gels with nominal pore diameters of 40, 60, and 100 A have been measured over the temperature range 170-245 K. The spectra consist of a number of lines, which contain detailed information on the system. The most interesting result is that the chemical shift of a particular signal observed below the melting point of confined acetonitrile is highly sensitive to the pore size, and hence its shape is sensitive to the pore size distribution function. This signal originates from the xenon atoms sited in very small cavities built up inside the pores during the freezing transition. It can be used to determine the size or even the size distribution function of the pores. In addition, the emergence of this signal reveals the phase transition temperature of acetonitrile inside the pores, which can also be used to determine the size of the pores. The difference in the chemical shifts of two other signals, which arise from xenon dissolved in bulk and confined acetonitrile, provides still another novel method for determining the size of the pores.  相似文献   

4.
In our previous paper (J. Phys. Chem. B 2005, 109, 757) it was illustrated that the 129Xe NMR spectra of xenon dissolved in acetonitrile confined into mesoporous materials give detailed information on the system, especially about the pore sizes. A resonance signal originating from xenon atoms sited in very small cavities built up inside the pores during the freezing transition (referred to as signal D) turned out to be highly sensitive to the pore size. The emergence of this signal reveals the phase transition temperature of acetonitrile inside the pores, which can also be used to determine the size of the pores. In addition, the difference in the chemical shifts of two other signals arising from xenon dissolved in bulk and confined acetonitrile (B and C) provides another method for determining the pore sizes. In the present work, the observed correlations have been investigated using an extensive set of measurements with a variety of porous materials (silica gels and controlled pore glasses) with the mean pore diameters ranging from 43 to 2917 A. The usefulness of the correlations has been demonstrated by calculating the pore size distributions from the spectral data. The distributions are in agreement with those reported by the manufacturers, when the mean pore diameter is smaller than approximately 500 A. In addition, it has been shown that the porosity of the materials can be determined by comparing the intensities of the signals arising from the bulk and confined liquid. When acetonitrile is replaced by cyclohexane in the sample, the dependence of the chemical shift difference between the B and C signals on the pore size becomes more sensitive, but no D signal appears below the freezing point. In addition, the influence of xenon gas on the melting points of bulk and confined acetonitrile has been studied by 1H NMR cryoporometry. The measurements show that the temperature of the latter transition lowers slightly more, and consequently affects the pore sizes calculated by means of the difference in the phase transition temperatures. Hysteresis in the phase transitions in a cooling-warming cycle has also been studied as a function of the temperature stabilization time by 129Xe NMR of xenon dissolved in acetonitrile.  相似文献   

5.
The behavior of nematic liquid crystal (LC) Merck Phase 4 confined to controlled pore glass (CPG) materials was investigated using 129Xe nuclear magnetic resonance (NMR) spectroscopy of xenon gas dissolved in the LC. The average pore diameters of the materials varied from 81 to 2917 A, and the measurements were carried out within a wide temperature range (approximately 185-370 K). The spectra contain lots of information about the effect of confinement on the phase of the LC. The theoretical model of shielding of noble gases dissolved in liquid crystals on the basis of pairwise additivity approximation was applied to the analysis of the spectra. When pore diameter is small, smaller than approximately 150 A, xenon experiences on average an isotropic environment inside the pore, and no nematic-isotropic phase transition is observed. When the size is larger than approximately 150 A, nematic phase is observed, and the LC molecules are oriented along pore axis. The orientational order parameter of the LC, S, increases with increasing pore size. In the largest pores, the orientation of the molecules deviates from the pore axis direction to magnetic field direction, which implies that the size of the pores (approximately 3000 A) is close to magnetic coherence length. The decrease of magnetic coherence length with increasing temperature is clearly seen from the spectra. When the sample is cooled rapidly by immersing it in liquid nitrogen, xenon atoms do not squeeze out from the solid, as they do during gradual freezing, but they are occluded inside the solid lattice, and their chemical shift is very sensitive to crystal structure. This makes it possible to study the effect of confinement on the solid phases. According to the measured 129Xe NMR spectra, possibly three different solid phases are observed from bulk liquid crystal in the used temperature region. The same is also seen from the samples containing larger pores (pore size larger than approximately 500 A), and the solid-solid phase-transition temperatures are the same. However, no first-order solid-solid phase transitions are observed from the smaller pores. Melting point depression, that is, the depression of solid-nematic transition temperature observed from the pores as compared with that in bulk LC, is seen to be very sensitive to the pore size, and it can be used for the determination of pore size of an unknown material.  相似文献   

6.
Model aqueous dispersions of polystyrene, poly(methyl methacrylate), poly(n-butyl acrylate) and a statistical copolymer poly(n-butyl acrylate-co-methyl methacrylate) were studied using xenon NMR spectroscopy. The 129Xe NMR spectra of these various latexes reveal qualitative and quantitative differences in the number of peaks and in their line widths and chemical shifts. Above the glass transition temperature, exchange between xenon sorbed in the particle core and free xenon outside the particles is fast on the 129Xe spectral time-scale and a single 129Xe signal is observed. At temperatures below the glass transition temperature, the exchange between sorbed and free xenon is slow on the 129Xe spectral time-scale and two 129Xe NMR signals can be observed. If the signal of sorbed 129Xe is observed, its chemical shift, line width and integral relative to the integral of free 129Xe can be used for the characterization of the particle core. The line width of free 129Xe provides the residence time of xenon outside the particles and can be used to determine the rate constant characterizing the kinetics of penetration of xenon in the particles. This rate constant emerges as promising parameter for the characterization of the polymer particle surface.  相似文献   

7.
129Xe NMR measurements of adsorbed xenon are shown for the first time to be a suitable tool to characterize the porosity and the properties of the metal-organic framework Cu3(BTC)2(H2O)3 (BTC = benzene 1,3,5-tricarboxylate). The NMR experiments are performed at room temperature and over a wide range of xenon pressure and on two different synthesized Cu3(BTC)2 samples. 129Xe NMR results reveal that in dependence on the kind of the synthesis pathway either one or two signals are observed which can be attributed to two kinds of fast exchange of xenon atoms in two pores with different pore sizes. Coadsorption experiments of xenon and ethylene demonstrate that the xenon atoms prefer to fill the greater pores of the material because the smaller pores are occupied with residual molecules from the synthesis procedure and additionally adsorbed ethylene. Besides the NMR experiments a series of electron paramagnetic resonance (EPR) measurements are performed to estimate the state of copper having a strong influence on the chemical shift of the adsorbed xenon. The EPR experiments demonstrate that spin exchange between the interconnected copper dimers is taking place across the BTC linker molecules in the Cu3(BTC)2 framework.  相似文献   

8.
Hyperpolarized (129)Xe (xenon) gas dissolved in a perfluorooctyl bromide (PFOB) emulsion stabilized with egg yolk phospholipid (EYP) is a possible contrast agent for quantitative blood flow measurements using magnetic resonance imaging. The NMR line shape of xenon dissolved in PFOB emulsion depends strongly on the exchange of spins between PFOB and water. The exchange in this system depends on three factors: the geometrical factors (i.e., droplet size and surrounding water volume), the permeability of the EYP monolayer surrounding the droplet, and the diffusion coefficients of xenon in the two media. A theoretical model which predicts the line shape of xenon in the emulsion based on the Bloch-Torrey equations is presented. Fitting the full width at half maximum (FWHM) of the theoretical line shapes with the FWHM of the experimental spectra obtained from emulsions with different water dilutions allows estimation of the volume-weighted average diameter of the PFOB droplets (3.5+/-0.8) microm and the permeability of the EYP membrane surrounding the droplet (58+/-14) microm / s.  相似文献   

9.
Wild-type bacteriophage T4 lysozyme contains a hydrophobic cavity with binding properties that have been extensively studied by X-ray crystallography and NMR. In the present study, the monitoring of 1H chemical shift variations under xenon pressure enables the determination of the noble gas binding constant (K = 60.2 M(-1)). Although the interaction site is highly localized, dipolar cross-relaxation effects between laser-polarized xenon and nearby protons (SPINOE) are rather poor. This is explained by the high value of the xenon-proton dipolar correlation time (0.8 ns), much longer than the previously reported values for xenon in medium-size proteins. This indicates that xenon is highly localized within the protein cavity, as confirmed by the large chemical shift difference between free and bound xenon. The exploitation of the xenon line width variation vs xenon pressure and protein concentration allows the extraction of the exchange correlation time between free and bound xenon. Comparison to the exchange experienced by protein protons indicates that the exchange between the open and closed conformations of T4 lysozyme is not required for xenon binding.  相似文献   

10.
The contribution of the vapor phase to molecular diffusion in porous silica glass (Vitrapor#5; mean pore diameter 1 micrometer) partially filled with cyclohexane (nonpolar) or water (polar) was investigated with the aid of field-gradient NMR diffusometry. Due to the vapor phase, the effective diffusion coefficient of cyclohexane increased up to ten times relative to the value in bulk liquid upon reduction of the pore space filling factor. On the other hand, the effective diffusion coefficient of water first decreases and then increases when the liquid content is reduced. A two-phase exchange theory is presented accounting well for all experimental diffusion features. The diffusion behavior in the samples with micrometer pores under investigation here is in contrast to previous findings for the same solvents in a material with nanometer pores (Vycor; mean pore diameter 4 nm) where the fast-exchange limit had to be assumed [Ardelean et al., J. Chem. Phys. 119, 10358 (2003)]. It is concluded that the pore size plays a crucial role for the relevance of molecular exchange limits relative to the experimental diffusion/exchange time.  相似文献   

11.
Recently, we have described the metal-organic framework Ni(2)(2,6-ndc)(2)(dabco), denoted as DUT-8(Ni) (1) (DUT = Dresden University of Technology, 2,6-ndc = 2,6-naphthalenedicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]octane). Upon adsorption of molecules such as nitrogen and xenon, this material exhibits a pronounced gate-pressure effect which is accompanied by a large change of the specific volume. Here, we describe the use of high-pressure in situ (129)Xe NMR spectroscopy, i.e., the NMR spectroscopic measurements of xenon adsorption/desorption isotherms and isobars, to characterize this effect. It appears that the pore system of DUT-8(Ni) takes up xenon until a liquid-like state is reached. Deeper insight into the interactions between the host DUT-8(Ni) and the guest atom xenon is gained from ab initio molecular dynamics (MD) simulations. van der Waals interactions are included for the first time in these calculations on a metal-organic framework compound. MD simulations allow the identification of preferred adsorption sites for xenon as well as insight into the breathing effect at a molecular scale. Grand canonical Monte Carlo (GCMC) simulations have been performed in order to simulate adsorption isotherms. Furthermore, the favorable influence of a sample pretreatment using solvent exchange and drying with supercritical CO(2) as well as the influence of repeated pore opening/closure processes, i.e., the "aging behavior" of the compound, can be visualized by (129)Xe NMR spectroscopy.  相似文献   

12.
The first successful in situ studies of free combustion processes by one- and two-dimensional NMR spectroscopy are reported, and the feasibility of this concept is demonstrated. In this proof-of-principle work, methane combustion over a nanoporous material is investigated using hyperpolarized (hp)-xenon-129 NMR spectroscopy. Different inhomogeneous regions within the combustion cell are identified by the xenon chemical shift, and the gas exchange between these regions during combustion is revealed by two-dimensional exchange spectra (EXSY). The development of NMR spectroscopy as an analytical tool for combustion processes is of potential importance for catalyzed reactions within opaque media that are difficult to investigate by other techniques.  相似文献   

13.
Cryptophanes bearing OCH(2)COOH groups in place of the methoxy groups represent a new class of xenon-carrier molecules soluble in water at biological pH. By using (1)H and (129)Xe NMR (thermally- and laser-polarized dissolved gas), the structural and dynamical behaviors of these host molecules as well as their interaction with xenon are studied. They are shown to exist in aqueous solution under different conformations in very slow exchange. A saddle form present for one of these conformations could explain the (1)H NMR spectra. Whereas the cryptophanes in such a conformation are unable to complex xenon, unprecedented high binding constants are found for cryptophanes in the other canonical crown-crown conformation. These host molecules could therefore be valuable candidates for biosensing using (129)Xe MRI.  相似文献   

14.
15.
Pecan shell-based biochar is utilized as a filtration medium, sequestrant for metallic ions, soil conditioner, and other applications. One process for creating the biochar involves the use of phosphoric acid at high temperature in a partial oxygen atmosphere to produce a highly porous carbonaceous material. In this work, we found 129Xe NMR to be an excellent technique to study micropores in biochar. Thus, the 129Xe chemical shift in biochar was found to vary linearly with the xenon pressure; from the data an estimate of about 8–9 Å could be proposed for the average pore diameter in pecan shell-based biochar. Through saturation recovery and 2-D NMR exchange experiments, information on the exchange between free versus bound xenon was obtained. Furthermore, correlations of 129Xe NMR data with the carbonization process conditions were made.  相似文献   

16.
MCM41中孔分子筛是1992年由Mobil公司的科学家Kresge[1]等人首次合成的,并在《自然》杂志发表。这种中孔分子筛具有六角形孔径,孔径2nm~10nm,这种分子筛的孔径可以通过水晶模板来控制[2]。已报道的合成MCM41,孔径一般在2.0nm~3.5nm,使用的水晶模板一般是单一或两种阳离子季铵盐表面活性剂[3,4]。本论文通过引入第二种扩孔模板,与阳离子季铵盐协同作用,合成了孔径5.2nm(BET法测)的MCM41。通过氮气的吸脱附,测定了分子筛的比表面和孔径等性质。J.Fraissard…  相似文献   

17.
One‐ and two‐dimensional xenon‐129 nuclear magnetic resonance (129Xe NMR) experiments were performed on a series of poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PXE) samples to characterize the sorption environments and the relative mobility of xenon in the samples. Samples of PXE in sealed NMR tubes pressurized with xenon were studied as a function of temperature, pressure, and processing. In a dense cast film of PXE, the shift relative to the free gas resonance is smaller than that observed for typical glassy polymers, indicating a higher free volume environment. Solubility rises rapidly as temperature decreases. The lower shift and rapid increase in solubility with decreasing temperature are consistent with a relatively high free volume environment for gas sorption. If PXE is antiplasticized, the shift is slightly larger, the increase in signal intensity with decreasing temperature is smaller, and the line widths are greater. This sample is a better packed glass with less free volume and slower diffusion. Samples of PXE produced by rapid precipitation have broad lines and even lower shifts corresponding to a wide distribution of higher free volume environments. The appearance of two lines at low temperatures is consistent with the presence of a bimodal distribution of environments similar to what has been observed with positron annihilation lifetime spectroscopy. The resonance closest to the free gas resonance is associated with very large free volume elements relative to those of traditional glassy polymers. In two‐dimensional experiments, there is a rapid exchange of xenon by diffusion between the two environments, indicating the close spatial proximity of the environments. Two‐dimensional experiments and one‐dimensional progressive saturation experiments reflect a rapid exchange of xenon between the sorbed state and the free gas resonance for the precipitated samples. At low temperatures, the high field peak exchanges more rapidly with the free gas. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1965–1974, 2002  相似文献   

18.
The interaction of xenon with cryptophane derivatives is analyzed by NMR by using either thermal or hyperpolarized noble gas. Twelve hosts differing by their stereochemistry, cavity size, and the nature and the number of the substituents on the aromatic rings have been included in the study, in the aim of extracting some clues for the optimization of (129)Xe-NMR based biosensors derived from these cage molecules. Four important properties have been examined: xenon-host binding constant, in-out exchange rate of the noble gas, chemical shift, and relaxation of caged xenon. This work aims at understanding the main characteristics of the host-guest interaction in order to choose the best candidate for the biosensing approach. Moreover, rationalizing xenon chemical shift as a function of structural parameters would also help for setting up multiplexing applications. Xenon exhibits the highest affinity for the smallest cryptophane, namely cryptophane-111, and a long relaxation time inside it, convenient for conservation of its hyperpolarization. However, very slow in-out xenon exchange could represent a limitation for its future applicability for the biosensing approach, because the replenishment of the cage in laser-polarized xenon, enabling a further gain in sensitivity, cannot be fully exploited.  相似文献   

19.
(129)Xe NMR has been used to study a series of homologous activated carbons obtained from a KOH-activated pitch-based carbon molecular sieve modified by air oxidation/pyrolysis cycles. A clear correlation between the pore size of microporous carbons and the (129)Xe NMR of adsorbed xenon is proposed for the first time. The virial coefficient delta(Xe)(-)(Xe) arising from binary xenon collisions varied linearly with the micropore size and appeared to be a better probe of the microporosity than the chemical shift extrapolated to zero pressure. This correlation was explained by the fact that the xenon collision frequency increases with increasing micropore size. The chemical shift has been shown to vary very little with temperature (less than 9 ppm) for xenon trapped inside narrow and wide micropores. This is indicative of a smooth xenon-surface interaction potential.  相似文献   

20.
Surface structure, pore size distribution and pore wall thickness of a mesoporous material FSM-16 have been studied by X-ray powder diffraction (XRD), lH and 29Si MAS NMR and 1H liquid-state NMR, and by applying surface silylation as a probe. Concentrations of surface hydroxyl groups for FSM-16 are estimated from 29Si and 1H MAS NMR, which are about 3×l021 g-1, corresponding to approximately 3 nm-2. O2 molecules contribute to 29Si spin-lattice relaxation of Q2 and Q3 as well as Q4, suggesting thin wall thickness. 1H MAS NMR spectra indicate the presence of isolated and hydrogen-bonded hydroxyl groups. Both hydroxyl groups are silylated, where the silylated fraction is about 50%. The spatial distribution of surface hydroxyl groups is estimated from the line width in 1H static spectra. A rather homogeneous distribution is demonstrated in one of the samples. The sample with less homogeneous distribution has a larger affinity for moisture. Pore size and pore wall thickness were determined by 1H NMR measurements on water saturated FSM-16 samples, which are in good agreement with literature values obtained by N2 adsorption isotherms and transmission electron micrographs on a similar sample. In benzene saturated samples, a non-freezing surface layer of benzene is much thicker than that of water, which indicates a stronger interaction between benzene and the FSM-16 surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号