首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We introduce a compact finite-temperature density functional model to study electron self-trapping in both liquid and vapor (3)He and (4)He. This model can quantitatively reproduce the most essential thermodynamic properties of (3)He and (4)He along their liquid-vapor coexistence lines. The structures and energetics of self-trapped electron bubbles on the 1S ground state and 1P excited state are particularly investigated. Our results show that 1S and 1P bubbles exist in liquid at any temperature, whereas 1S bubbles exist in vapor only above 1.6 K in (3)He and above 2.8 K in (4)He, 1P bubbles exist in vapor only above 2.5 K in (3)He and 4.0 K in (4)He. An initially spherical 1P bubble is unstable against deformation towards a peanut shape. In liquid, a peanut-shaped 1P bubble is held from fission by surface tension until reaching the liquid-vapor critical point, whereas in vapor it always splits into two smaller bubbles. The existence of 1P bubbles in finite-temperature liquid helium and their fission instability in helium vapor reveal interesting physics in this system.  相似文献   

2.
The light-transmissive properties of a solid-state tetrathiafulvalene radical cation-bis(trifluoromethanesulfonyl)imide, 1-C5+ ⋅ NTf2, underwent instantaneous changes in the short-wave infrared (SWIR) region (1000–2500 nm) upon exposure to solvent vapor or the application of mechanostress at room temperature. The initial solid state of 1-C5+ ⋅ NTf2 exhibited strong absorption in the near-infrared (NIR; 700–1000 nm) and SWIR regions, whereas the absorption in the SWIR region was significantly diminished in the stimulated state induced by dichloromethane vapor. Upon cessation of vapor stimulation, the solid state spontaneously and promptly reverted to its original state, characterized by absorption bands in the NIR/SWIR region. Moreover, the SWIR absorption was absent upon the application of mechanical stress using a steel spatula. The reversal was fast and occurred within 10 s. These changes were visualized using a SWIR imaging camera under 1450-nm light irradiation. Experimental investigations demonstrated that the transparency to the SWIR light in the solid states was modulated through significant structural transformations of the associated radical cations, with transitions between columnar and isolated π-dimer structures under ambient and stimulated conditions, respectively.  相似文献   

3.
采用氧(或空气)-水蒸汽混合气氛下的固相反应,可合成无任何SrRuO3杂相的纯相化合物Sr2GdRuO6.当由Sr2GdRuO6作先驱物,类似的固相反应体系,可成功合成无任何SrRuO3杂相的纯相RuSr2GdCu2O8化合物.此外,还讨论了有水蒸汽参与的固相反应合成Sr2GdRuO6的反应机理.结果表明,水蒸气的作用是抑制SrRuO3的形成,而不是有利于把SrRuO3杂相转化为Sr2GdRuO6相.  相似文献   

4.
A novel catalytic method for carrying out the cationic polymerizations has been developed based on a redox initiator system in which the reducing component is delivered to the reaction mixture in the vapor state. The redox couple consists of a diaryliodonium salt that is dissolved in the monomer and a noble metal catalyst is added. The silane reducing agent is introduced to the reaction mixture in the vapor state using air as the carrier gas. Reduction of the diaryliodonium salt by the silane results in the liberation of a Brønsted superacid that initiates cationic polymerizations. A study of the effects of variations in the structures of the diaryliodonium salt, the silane, and the type of noble metal catalyst was carried out. In principle, the initiator system is applicable to all types of cationically polymerizable monomers and oligomers including: the ring‐opening polymerizations of such heterocyclic monomers as epoxides and oxetanes and, in addition, the polymerization of vinyl ether monomers such as vinyl ethers. The use of this initiator system for carrying out commercially attractive cross‐linking polymerizations for coatings, composites, and encapsulations is discussed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1825–1835, 2009  相似文献   

5.
Lim BS  Rahtu A  Park JS  Gordon RG 《Inorganic chemistry》2003,42(24):7951-7958
A series of homoleptic metal amidinates of the general type [M(R-R'AMD)(n)](x) (R = (i)Pr, (t)Bu, R' = Me, (t)Bu) has been prepared and structurally characterized for the transition metals Ti, V, Mn, Fe, Co, Ni, Cu, Ag, and La. In oxidation state 3, monomeric structures were found for the metals Ti(III), V(III), and La(III). Bridging structures were observed for the metals in oxidation state 1. Cu(I) and Ag(I) are held in bridged dimers, and Ag(I) also formed a trimer that cocrystallized with the dimer. Metals in oxidation state 2 occurred in either monomeric or dimeric form. Metals with smaller ionic radii (Co, Ni) were monomeric. Larger metals (Fe, Mn) gave monomeric structures only with the bulkier tert-butyl-substituted amidinates, while the less bulky isopropyl-substituted amidinates formed dimers. The new compounds were found to have properties well-suited for use as precursors for atomic layer deposition (ALD) of thin films. They have high volatility, high thermal stability, and high and properly self-limited reactivity with molecular hydrogen, depositing pure metals, or water vapor, depositing metal oxides.  相似文献   

6.
The selenoketyl (HCCSe) radical has been positively identified for the first time as a product of an electric discharge through selenophene vapor. Laser-induced fluorescence, wavelength resolved emission, and fluorescence decay studies of jet-cooled HCCSe and DCCSe have given a detailed picture of the ground and excited state. The 418-400 nm band system of the HCCSe radical is assigned as A (2)Pi(i)-X (2)Pi(i) and the available evidence suggests that the radical is linear in the ground state and quasilinear in the excited state. The fluorescence decays of some upper state rotational levels show field-free molecular quantum beats, ascribed to an internal conversion interaction with high vibrational levels of the ground state. A comparison of the molecular structures and bonding in the HCCX (X=O,S,Se) free radicals shows that nonlinear ground state HCCO is best described as the ketenyl radical (H[Single Bond]C[Double Bond]C[Double Bond]O) with the unpaired electron on the terminal carbon atom, whereas HCCS and HCCSe have linear ground state acetylenic (H[Single Bond]C[Triple Bond]C[Single Bond]X) structures with the unpaired electron on the heteroatom. On electronic excitation, B (2)Pi HCCO reverts to the linear acetylenic structure, and A (2)Pi HCCS and HCCSe become quasilinear with the allenic structure.  相似文献   

7.
p, rho, T data of the supersaturated vapor of the Lennard-Jones fluid are obtained by molecular dynamics simulations. The metastable state points are identified before a phase separation takes place. An estimation of the location of the spinodal is given. The results are compared to two theoretically based equations of state and one empirical equation of state which was parametrized also taking into account metastable state points. The pressure obtained by simulation is found to be lower than that from both theoretically based equations of state, which do not account for the inhomogeneous density distribution of the supersaturated vapor.  相似文献   

8.
9.
Recent gravimetric studies of the sorption of organic vapors by poly(vinyl chloride) and polystyrene powders have demonstrated several features which promise to be generally useful in studying the structure and properties of the glassy state. The uptake of vapor can be significantly altered by prior thermal or vapor treatment of the polymer, apparently reflecting changes in the microvoid content or free volume of the polymer. Fickian sorption in sufficiently fine powders proceeds to equilibrium in a few minutes. Upon exposure of a polymer powder to an appreciable pressure of vapor, both a rapid Fickian sorption and a slower, relaxation-controlled sorption are observed. Superposition of these processes leads to widely varied sorption kinetics; a model comprising Fickian diffusion and first-order relaxation terms accurately describes the data and allows estimation of equilibrium and rate constants for both processes. After prolonged exposure, removal of a swelling vapor induces a slow reconsolidation of the polymer structure; this deswelling relaxation can be monitored by the decreasing amounts of vapor sorbed in repeated brief exposures to low vapor pressures, and can also be described by a first-order relaxation model. In this regard, the penetrant vapor serves as a molecular probe, monitoring glassy-state relaxation occurring in the absence of penetrant. The same, presumably true equilibrium is ultimately reached both by swelling from a low free-volume state and by consolidation from a preswollen state of high free volume. The rates of both swelling and consolidation relaxations appear to be retarded by the presence of low concentrations of vapor in the polymer, suggesting that vapor molecules may preempt some of the free volume required for relaxation.  相似文献   

10.
The influence of the dispersity and structural and phase state of oxide materials based on Fe2O3 and SnO2 on the gas-sensitive properties of these materials used as sensitive layers in chemical sensors was considered. It was found that high-dispersity Fe2O3-SnO2 (Fe: Sn = 9: 1) ceramic layers possessed high sensitivity to ethanol vapor in both dry and humid atmosphere and low sensitivity to CO and CH4. The maximum response to ethanol vapor in humid atmosphere was characteristic of layers with structures of substitution-interstitial solid solutions of Sn4+ in α-Fe2O3.  相似文献   

11.
With the use of molecular modeling, we have demonstrated that solubility parameters obtained from current experimental methods correspond to a hypothetical vaporization process of which the conformational change of macromolecules in the vapor state is ignored. Since the energy associated with such a process is relatively large, its impact on the resultant δ cannot be neglected. This is especially important for polymers that shrink considerably in the vapor state.  相似文献   

12.
Infrared spectra recorded for 1,5-dimethyl-2,8:4,6-semibullvalenetetracarboxylic acid dianhydride (12) in the condensed and vapor phase clearly prove that in the vapor phase the dianhydride 12 is a homoaromatic ground state semibullvalene.  相似文献   

13.
The mechanistic impact of water addition to SmI2 on the ground state and rate-limiting transition state structures in the reduction of benzyl bromide was determined using UV-vis spectroscopy, cyclic voltammetry, vapor pressure osmommetry, and stopped-flow spectrophotometric studies. The results obtained from these studies show that, upon addition of water, SmI2 in THF (or DME) becomes partially water-solvated by displacing metal-coordinated solvent. Further addition of water displaces remaining bound solvent and induces a monomer-dimer equilibrium of the SmI2-water complex. Concomitant with this process, a thermodynamically more powerful reductant is created. Rate studies on the reduction of benzyl bromide by SmI2-water are consistent with reaction occurring through a dimeric transition state with the assembly of the activated complex requiring an equivalent of water at low concentrations but not at higher concentrations. The mechanistic complexity of the SmI2-water system shows that simple empirical models describing the role of water in SmI2-mediated reductions are likely to contain a high degree of uncertainty.  相似文献   

14.
Novel multifunctional polyazomethines containing triphenylamine structure in the main chain have been prepared via polycondensation of 4,4′-diformyltriphenylamine with aromatic diamines, which were characterized by elemental analysis, 1H NMR, TG, DSC, and XRD techniques. The polymers with the decomposition temperatures of about 450 °C were heat resistant and amorphous. The UV–visible and PL spectra of polyazomethines were dependent on the diamines structures. The polyazomethines emit blue–green light at about 470 nm in pristine state and emit reddish orange at about 590 nm due to being doped with electrooxidation, acid or UV irradiation, respectively. The doped polyazomethines can go back pristine state under NH3 vapor. The results suggest that the polyazomethines can be used as molecular switches, sensors or emitting dyes. The morphologies were investigated by AFM to be different appearance due to the natural structures of macromolecules and the convolution of self-assemblies during vaporization of solvent.  相似文献   

15.
A microscopic theory of adsorption, based on a discrete continuum lattice gas model for noninert (including deformable) adsorbents that change their lattice parameters during adsorption, is presented. Cases of the complete and partial equilibrium states of the adsorbent are considered. In the former, the adsorbent consists of coexisting solid and vapor phases of adsorbent components, and the adsorbate is a mobile component of the vapor phase with an arbitrary density (up to that of the liquid adsorbate phase). The adsorptive transitioning to the bound state changes the state of the near-surface region of the adsorbent. In the latter, there are no equilibrium components of the adsorbent between the solid and vapor phases. The adsorbent state is shown to be determined by its prehistory, rather than set by chemical potentials of vapor of its components. Relations between the microscopic theory and thermodynamic interpretations are discussed: (1) adsorption on an open surface, (2) two-dimensional stratification of the adsorbate mobile phase on an open homogeneous surface, (3) small microcrystals in vacuum and the gas phase, and (4) adsorption in porous systems.  相似文献   

16.
利用X射线光电子能谱(XPS)和聚焦离子束(FIB)技术,实现对FeCrAl合金涂层在1200℃水蒸气环境下氧化行为的研究.XPS和FIB法可以检测和观测到材料随深度变化的界面层、化学态和真实结构等信息,具有直观、且信息丰富(含量、化学态及形貌)等优点.为方法在更广泛的材料体系内的应用提供理论和实践基础.  相似文献   

17.
《Fluid Phase Equilibria》2006,242(1):19-28
In this work, a new two-parameter cubic equation of state is presented based on perturbation theory for predicting phase behavior of pure compounds and of hydrocarbons and non-hydrocarbons. The parameters of the new cubic equation of state are obtained as functions of reduced temperature and acentric factor. The average deviations of the predicted vapor pressure, liquid density and vapor volume for 40 pure compounds are 1.116, 5.696 and 3.083%, respectively. Also the enthalpy and entropy of vaporization are calculated by using the new equation of state. The average deviations of the predicted enthalpy and entropy of vaporization are 2.393 and 2.358%, respectively. The capability of the proposed equation of state for predicting some other thermodynamic properties such as compressibility, second virial coefficient, sound velocity in gases and heat capacity of gases are given, too. The comparisons between the experimental data and the results of the new equation of state show the accuracy of the proposed equation with respect to commonly used equations of state, i.e. PR and SRK. The zeno line has been calculated using the new equation of state and the obtained result compared with quantities in the literatures. Bubble pressure and mole fraction of vapor for 16 binary mixtures are calculated. Averages deviations for bubble pressure and mole fraction of vapor are 9.380 and 2.735%, respectively.  相似文献   

18.
The condensation of a supersaturated vapor enclosed in a finite system is considered. A phenomenological analysis reveals that the vapor is found to be stable at densities well above coexistence. The system size at which the supersaturated vapor condenses into a droplet is found to be governed by a typical length scale which depends on the coexistence densities, temperature and surface tension. When fluctuations are neglected, the chemical potential is seen to show a discontinuity at an effective spinodal point, where the inhomogeneous state becomes more stable than the homogeneous state. If fluctuations are taken into account, the transition is rounded, but the slope of the chemical potential versus density isotherm develops a discontinuity in the thermodynamic limit. In order to test the theoretical predictions, we perform a simulation study of droplet condensation for a Lennard-Jones fluid and obtain loops in the chemical potential versus density and pressure. By computing probability distributions for the cluster size, chemical potential, and internal energy, we confirm that the effective spinodal point may be identified with the occurrence of a first order phase transition, resulting in the condensation of a droplet. An accurate equation of state is employed in order to estimate the droplet size and the coexisting vapor density and good quantitative agreement with the simulation data is obtained. The results highlight the need of an accurate equation of state data for the Laplace equation to have predictive power.  相似文献   

19.
Fluorescence and fluorescence excitation spectra of diphenyloctatetraene vapor have been measured at different temperatures from 98 to 136 degrees C and at different buffer gas pressures from 0 to 300 Torr. The fluorescence quantum yields were determined as functions of the excitation energy and buffer gas pressure. It is shown that diphenyloctatetraene vapor exhibits weak fluorescence from the S2 (1(1)Bu) state in addition to the fluorescence from the S1 (2(1)Ag) state. The quantum yield of the S1 fluorescence is shown to decrease with decreasing pressure and with increasing excitation energy. The electronic relaxation processes of diphenyloctatetraene vapor are discussed based on the pressure and excitation-energy dependence of the fluorescence quantum yield.  相似文献   

20.
《Fluid Phase Equilibria》2006,239(1):83-90
A new three-parameter cubic equation of state is developed with special attention to the application for reservoir fluids. One parameter is taken temperature dependent and others are held constant. The EOS parameters were evaluated by minimizing saturated liquid density deviation from experimental values and satisfying the equilibrium condition of equality of fugacities simultaneously. Then, these parameters were fitted against reduced temperature and Pitzer acentric factor. For calculating the thermodynamic properties of a pure component, this equation of state requires the critical temperature, the critical pressure, the acentric factor and the experimental critical compressibility of the substance. Using this equation of state, saturated liquid density, saturated vapor density and vapor pressure of pure components, especially near the critical point, are calculated accurately. The average absolute deviations of the predicted saturated liquid density, saturated vapor density and vapor pressure of pure components are 1.4%, 1.19% and 2.11%, respectively. Some thermodynamic properties of substances have also been predicted in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号