首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 163 毫秒
1.
《Chemical physics letters》1987,140(4):406-410
The classical and quantum-mechanical free energies of crystalline (fcc) argon were determined at two state points by classical and path integral Monte Carlo methods. The quantum corrections to the free energy, energy and pressure so obtained are compared with corrections based on the harmonic approximation and the first-order term in the Wigner-Kirkwood expansion.  相似文献   

2.
The thermodynamic properties of semiclassical hard-body fluid mixtures are studied. Explicit expressions are given for the free-energy, equation of state and virial coefficients of the classical hard convex-body fluid mixtures. The numerical results are discussed under different conditions. The agreement with the exact data is good in all cases. The first-order quantum corrections are also studied. The quantum effects depend on the condition, shape parameters L11* and L22*, and concentrations x1 and x2 in general and increase with an increase of packing fraction eta, in particular.  相似文献   

3.
在不同温度下对液态水进行分子动力学模拟,研究各温度下液态水中各个原子的速度自相关函数密度谱,以考察液态水热容的量子校正随温度的变化规律.研究结果表明,水分子的三个内部振动模式对热容的量子校正不随温度变化,而转动和分子距平衡位置的摆动运动模式的量子校正随温度升高而逐步减小.对于分子动力学模拟结果经温度涨落计算所得的热容进行了量子校正,校正结果与实验值能符合.  相似文献   

4.
The problem of calculating the thermodynamic properties of two-dimensional semiclassical hard-body fluids is studied. Explicit expressions are given for the first-order quantum corrections to the free energy, equation of state, and virial coefficients. The numerical results are calculated for the planar hard dumbbell fluid. Significant features are the increase in quantum corrections with increasing eta and increasing L*=L/sigma(0).  相似文献   

5.
Recent progress in our understanding of quantum effects on the Brownian motion in an external potential is reviewed. This problem is ubiquitous in physics and chemistry, particularly in the context of decay of metastable states, for example, the reversal of the magnetization of a single domain ferromagnetic particle, kinetics of a superconducting tunnelling junction, etc. Emphasis is laid on the establishment of master equations describing the diffusion process in phase space analogous to the classical Fokker-Planck equation. In particular, it is shown how Wigner's [E. P. Wigner, Phys. Rev., 1932, 40, 749] method of obtaining quantum corrections to the classical equilibrium Maxwell-Boltzmann distribution may be extended to the dissipative non-equilibrium dynamics governing the quantum Brownian motion in an external potential V(x), yielding a master equation for the Wigner distribution function W(x,p,t) in phase space (x,p). The explicit form of the master equation so obtained contains quantum correction terms up to o(h(4)) and in the classical limit, h --> 0, reduces to the classical Klein-Kramers equation. For a quantum oscillator, the method yields an evolution equation coinciding in all respects with that of Agarwal [G. S. Agarwal, Phys. Rev. A, 1971, 4, 739]. In the high dissipation limit, the master equation reduces to a semi-classical Smoluchowski equation describing non-inertial quantum diffusion in configuration space. The Wigner function formulation of quantum Brownian motion is further illustrated by finding quantum corrections to the Kramers escape rate, which, in appropriate limits, reduce to those yielded via quantum generalizations of reaction rate theory.  相似文献   

6.
A formulation of time-dependent density functional theory (TDDFT) in the presence of a static imaginary perturbation is derived. A perturbational approach is applied leading to corrections to various orders in the quantities of interest, namely, the excitation energies and transition densities. The perturbed TDDFT equations are relatively straightforward to derive but the resulting expressions are rather cumbersome. Simplifications of these equations are suggested. Both the simplified and full expressions are used to obtain equations for first- and second-order corrections to the excitation energy, the first-order correction to the transition density, and the corrections for both quantities to first-order in two different perturbations. This formulation, called magnetically perturbed TDDFT, details how conventional TDDFT calculations can be corrected to allow for the inclusion of a static magnetic field and/or spin-orbit coupling.  相似文献   

7.
Several simple quantum correction factors for classical line shapes, connecting dipole autocorrelation functions to infrared spectra, are compared to exact quantum data in both the frequency and time domain. In addition, the performance of the centroid molecular dynamics approach to line shapes and time-correlation functions is compared to that of these a posteriori correction schemes. The focus is on a tunable model that is able to describe typical hydrogen bonding scenarios covering continuously phenomena from tunneling via low-barrier hydrogen bonds to centered hydrogen bonds with an emphasis on floppy modes and anharmonicities. For these classes of problems, the so-called "harmonic approximation" is found to perform best in most cases, being, however, outperformed by explicit centroid molecular dynamics calculations. In addition, a theoretical analysis of quantum correction factors is carried out within the framework of the fluctuation-dissipation theorem. It can be shown that the harmonic approximation not only restores the detailed balance condition like all other correction factors, but that it is the only one that also satisfies the fluctuation-dissipation theorem. Based on this analysis, it is proposed that quantum corrections of response functions in general should be based on the underlying Kubo-transformed correlation functions.  相似文献   

8.
9.
10.
Moment-closure approximations have in recent years become a popular means to estimate the mean concentrations and the variances and covariances of the concentration fluctuations of species involved in stochastic chemical reactions, such as those inside cells. The typical assumption behind these methods is that all cumulants of the probability distribution function solution of the chemical master equation which are higher than a certain order are negligibly small and hence can be set to zero. These approximations are ad hoc and hence the reliability of the predictions of these class of methods is presently unclear. In this article, we study the accuracy of the two moment approximation (2MA) (third and higher order cumulants are zero) and of the three moment approximation (3MA) (fourth and higher order cumulants are zero) for chemical systems which are monostable and composed of unimolecular and bimolecular reactions. We use the system-size expansion, a systematic method of solving the chemical master equation for monostable reaction systems, to calculate in the limit of large reaction volumes, the first- and second-order corrections to the mean concentration prediction of the rate equations and the first-order correction to the variance and covariance predictions of the linear-noise approximation. We also compute these corrections using the 2MA and the 3MA. Comparison of the latter results with those of the system-size expansion shows that: (i) the 2MA accurately captures the first-order correction to the rate equations but its first-order correction to the linear-noise approximation exhibits the wrong dependence on the rate constants. (ii) the 3MA accurately captures the first- and second-order corrections to the rate equation predictions and the first-order correction to the linear-noise approximation. Hence while both the 2MA and the 3MA are more accurate than the rate equations, only the 3MA is more accurate than the linear-noise approximation across all of parameter space. The analytical results are numerically validated for dimerization and enzyme-catalyzed reactions.  相似文献   

11.
12.
We study the dependence of the classical plasmon frequency on the symmetry of the metal cluster and show that all clusters with at least two three-fold axes have the same plasmon frequency as the spherical cluster, ω p /√3. In these cases the effect of the geometry will only appear in the spill-out correction and in other quantum mechanical corrections.  相似文献   

13.
We present a new method for calculating quantum mechanical corrections to classical free energies, based on thermodynamic integration from classical to quantum mechanics. In contrast to previous methods, our method is numerically stable even in the presence of strong quantum delocalization. We first illustrate the method and its relationship to a well-established method with an analysis of a one-dimensional harmonic oscillator. We then show that our method can be used to calculate the quantum mechanical contributions to the free energies of ice and water for a flexible water model, a problem for which the established method is unstable.  相似文献   

14.
The precise gas viscosity measurements of Kestin and co-workers and a simple capillary viscometer have been used to test the classical slip correction at 25°C and one atmosphere for pyrex glass and stainless steel surfaces. Data are also presented for mixtures of helium and argon, and an empirical expression for applying slip corrections to viscosities of mixtures is tested.  相似文献   

15.
The properties of liquid methane, liquid neon, and gas helium are calculated at low temperatures over a large range of pressure from the classical molecular-dynamics simulations. The molecular interactions are represented by the Lennard-Jones pair potentials supplemented by quantum corrections following the Feynman-Hibbs approach. The equations of state, diffusion, and shear viscosity coefficients are determined for neon at 45 K, helium at 80 K, and methane at 110 K. A comparison is made with the existing experimental data and for thermodynamical quantities, with results computed from quantum numerical simulations when they are available. The theoretical variation of the viscosity coefficient with pressure is in good agreement with the experimental data when the quantum corrections are taken into account, thus reducing considerably the 60% discrepancy between the simulations and experiments in the absence of these corrections.  相似文献   

16.
We describe a new approach to incorporating quantum effects into chemical reaction rate theory using quantum trajectories. Our development is based on the entangled trajectory molecular dynamics method for simulating quantum processes using trajectory integration and ensemble averaging. By making dynamical approximations similar to those underlying classical transition state theory, quantum corrections are incorporated analytically into the quantum rate expression. We focus on a simple model of quantum decay in a metastable system and consider the deep tunneling limit where the classical rate vanishes and the process is entirely quantum mechanical. We compare our approximate estimate with the well-known WKB tunneling rate and find qualitative agreement.  相似文献   

17.
The time‐dependent discrete variable representation (TDDVR) of a wave function with grid points defined by the Hermite part of the Gauss–Hermite (G‐H) basis set introduces quantum corrections to classical mechanics. The grid points in this method follow classical trajectory and the approach converges to the exact quantum formulation with sufficient trajectories (TDDVR points) but just with a single grid point; only classical mechanics performs the dynamics. This newly formulated approach (developed for handling time‐dependent molecular quantum dynamics) has been explored to calculate vibrational transitions in the inelastic scattering processes. Traditional quantum mechanical results exhibit an excellent agreement with TDDVR profiles during the entire propagation when enough grid points are included in the quantum‐classical dynamics. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

18.
19.
Path integral molecular dynamics methods are employed to compute the free energy for proton transfer reactions for strongly hydrogen bonded systems in a polar solvent. The free energy profile is calculated using several different techniques, including: integration of the mean force acting on the proton path with its centroid constrained at different values, the integral form of the free energy calculation in the constrained-reaction-coordinate-dynamics ensemble and direct simulation of the unconstrained dynamics. The results show that estimates of the free energy barrier obtained by harmonic extrapolation are likely to be in error. Both quantum and classical results for the free energy are obtained and compared with simulations using adiabatic quantum dynamics. Comparison of the quantum and classical results show that there are quantum corrections to the solvent contributions to the free energy.  相似文献   

20.
The quantum instanton calculations of thermal rate constants for the gas-phase reaction SiH4+H-->SiH3+H2 and its deuterated analogs are presented, using an analytical potential energy surface. The quantum instanton approximation is manipulated by full dimensionality in Cartesian coordinate path integral Monte Carlo approach, thereby taking explicitly into account the effects of the whole rotation, the vibrotational coupling, and anharmonicity of the reaction system. The rates and kinetic isotope effects obtained for the temperature range of 200-1000 K show good agreements with available experimental data, which give support to the accuracy of the underlying potential surface used. In order to investigate the sole quantum effect to the rates, the authors also derive the classical limit of the quantum instanton and find that it can be exactly expressed as the classical variation transition state theory. Comparing the quantum quantities with their classical analogs in the quantum instanton formula, the authors demonstrate that the quantum correction of the prefactor is more important than that of the activation energy at the transition state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号