首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 836 毫秒
1.
The reactions of [Zr(NMe2)4]2 with triamido-triazacyclonane ligand precursors, {NH(Ph)SiMe2}3tacn (H3N3[9]N3) and {NH(C6H4F)SiMe2}3tacn (H3N3-F[9]N3), led to the formation of complexes [Zr(NMe2)2{N(Ph)SiMe2}2{NH(Ph) SiMe2}tacn], 1, and [Zr(NMe2)2{N(o-C6H4F)SiMe2}2{NH(o-C6H4F)SiMe2} tacn], 2, where the zirconium is coordinated to two remaining dimethylamido ligands and to a dianionic tacn-based ligand, [{N(Ph')SiMe2}2{NH(Ph')SiMe2}tacn]2-, that formed from deprotonation of two amine pendent arms of the ligands' precursors. The third pendent arm of H3N3[9]N3 and H3N3-F[9]N3 remains neutral and not bonded to the zirconium. Treatment of 1 with NaH led to the synthesis of [Zr(NMe2){N(Ph)SiMe2}2tacn], 3, that results from the cleavage of the N-Si bond of the original neutral pendent arm. Complexes [ZrCl{N(Ph')SiMe2}2tacn] (Ph' = C6H5, 4, and C6H4F, 5) have been obtained by reactions of ZrCl4 with {MN(Ph')SiMe2}3tacn.2THF (M = Li, Na). Reactions of 4 and 5 with LiC triple bond CPh led to the syntheses of [Zr(CCPh){N(Ph')SiMe2}2tacn] (Ph' = C6H5, 6, and C6H4F, 7). The solid-state structure of 3 shows a chiral metal center.  相似文献   

2.
[Ti[N(Ph)SiMe2]3-tacn]X complexes (X = Cl, 1; I, 2; PF6, 3; BPh4, 4) were studied by NMR and electron absorption and emission methods, which showed that these compounds exist in bromobenzene and dichloromethane solutions as ion pairs. The significant modifications observed in the proton resonances of tacn in C6D5Br, which follow the sequence BPh(4-) > or = PF(6-) > or = I- approximately Cl-, are a qualitative indication of the strength of the interactions that depend on the anion. The reaction of 2 with LiNMe2 led to [Ti(NPh)[NPh(SiMe2)]2-tacn], 5, that forms upon attack of Me2N- at one SiMe2 group. The formation of 5 is discussed on the basis of the interactions identified in solution.  相似文献   

3.
The crystalline dimeric 1-azaallyllithium complex [Li{mu,eta(3-N(SiMe3)C(Ad)C(H)SiMe3}]2 (1) was prepared from equivalent portions of Li[CH(SiMe3)2] and 1-cyanoadamantane (AdCN). Complex was used as precursor to each of the crystalline complexes 2-8 which were obtained in good yield. By 1-azaallyl ligand transfer, 1 afforded (i) [Al{eta3-N(SiMe3)C(Ad)C(H)SiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (5) with [AlCl2Me](2), (ii) [Sn{eta3-N(SiMe3)C(Ad)C(H)SiMe3}2] (7) with Sn[N(SiMe3)2]2, and (iii) [Li(N{C(Ad)=C(H)SiMe3-E}{Si(NN)SiMe3})(thf)2] (8) with the silylene Si[(NCH(2)Bu(t))2C6H(4)-1,2] [= Si(NN)]. By insertion into the C[triple bond, length as m-dash]N bond of the appropriate cyanoarene RCN, gave the beta-diketiminate [Li{mu-N(SiMe3)C(Ad)C(H)C(R)NSiMe3}]2 [R = Ph (2), C(6)H(4)Me-4 (3)], and yielded [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (6). The beta-diketiminate [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}Me2] (4) was prepared from 2 and [AlClMe2]2. The X-ray structures of 1 and 3-8 are presented. Multinuclear NMR spectra in C6D6 or C6D5CD3 have been recorded for each of 1-8; such data on 8 revealed that in solution two minor isomers were also present.  相似文献   

4.
We report on (i) the reactivity of the title compound trans-[Cl(PMe(3))(2)Pt{μ-BN(SiMe(3))(2)C=C}Ph] (1), which underwent a photochemical rearrangement reaction to afford the platinum boryl complex trans-[Cl(PMe(3))(2)PtBN(SiMe(3))(2)C≡CPh] (2), (ii) a ring-opening reaction by chemoselective boron-carbon bond cleavage resulting in the amino(vinyl)borane trans-[Cl(PMe(3))(2)PtCH=C(BClN(SiMe(3))(2))Ph] (3), and (iii) a Cl-Br ligand exchange on the platinum atom yielding the Br-derivate trans-[Br(PMe(3))(2)Pt{μ-BN(SiMe(3))(2)C=C}Ph] (4). All compounds were fully characterized by multinuclear NMR spectroscopy and single crystal X-ray diffraction analysis.  相似文献   

5.
N-Trimethylsilyl o-methylphenyldiphenylphosphinimine, (o-MeC6H4)PPh2=NSiMe3 (1), was prepared by reaction of Ph2P(Br)=NSiMe3 with o-methylphenyllithium. Treatment of 1 with LiBun and then Me3SiCl afforded (o-Me3SiCH2C6H4)PPh2=NSiMe3 (2). Lithiations of both 1 and 2 with LiBu(n) in the presence of tmen gave crystalline lithium complexes [Li{CH(R)C6H4(PPh(2=NSiMe3)-.tmen](3, R = H; 4, R = SiMe3). From the mother liquor of 4, traces of the tmen-bridged complex [Li{CH(SiMe3)C6H4(PPh2=NSiMe3)-2}]2(mu-tmen) (5) were obtained. Reaction of 2 with LiBun in Et2O yielded complex [Li{CH(SiMe3)C6H4(PPh2=NSiMe3)-2}.OEt2] (6). Reaction of lithiated with Me2SiCl2 in a 2:1 molar ratio afforded dimethylsilyl-bridged compound Me2Si[CH2C6H4(PPh2=NSiMe3)-2]2 (7). Lithiation of 7 with two equivalents of LiBun in Et2O yielded [Li2{(CHC6H4(PPh2=NSiMe3)-2)2SiMe2}.0.5OEt2](8.0.5OEt2). Treatment of 4 with PhCN formed a lithium enamide complex [Li{N(SiMe3)C(Ph)CHC6H4(PPh2=NSiMe3)-2}.tmen] (9). Reaction of two equivalents of 5 with 1,4-dicyanobenzene gave a dilithium complex [{Li(OEt2)2}2(1,4-{C(N(SiMe3)CHC6H4(PPh2=NSiMe3)-2}2C6H4)] (10). All compounds were characterised by NMR spectroscopy and elemental analyses. The structures of compounds 2, 3, 5, 6 and 9 have been determined by single crystal X-ray diffraction techniques.  相似文献   

6.
The tetracyclic dilithio-Si,Si'-oxo-bridged bis(N,N'-methylsilyl-beta-diketiminates) 2 and 3, having an outer LiNCCCNLiNCCCN macrocycle, were prepared from [Li{CH(SiMe(3))SiMe(OMe)(2)}](infinity) and 2 PhCN. They differ in that the substituent at the beta-C atom of each diketiminato ligand is either SiMe(3) (2) or H (3). Each of and has (i) a central Si-O-Si unit, (ii) an Si(Me) fragment N,N'-intramolecularly bridging each beta-diketiminate, and (iii) an Li(thf)(2) moiety N,N'-intermolecularly bridging the two beta-diketiminates (thf = tetrahydrofuran). Treatment of [Li{CH(SiMe(3))(SiMe(2)OMe)}](8) with 2Me(2)C(CN)(2) yielded the amorphous [Li{Si(Me)(2)((NCR)(2)CH)}](n) [R = C(Me)(2)CN] (4). From [Li{N(SiMe(3))C(Bu(t))C(H)SiMe(3)}](2) (A) and 1,3- or 1,4-C(6)H(4)(CN)(2), with no apparent synergy between the two CN groups, the product was the appropriate (mu-C(6)H(4))-bis(lithium beta-diketiminate) 6 or 7. Reaction of [Li{N(SiMe(3))C(Ph)=C(H)SiMe(3)}(tmeda)] and 1,3-C(6)H(4)(CN)(2) afforded 1,3-C(6)H(4)(X)X' (X =CC(Ph)N(SiMe3)Li(tmeda)N(SiMe3)CH; X' = CN(SiMe3)Li(tmeda)NC(Ph)=C(H)SiMe3)(9). Interaction of A and 2[1,2-C(6)H(4)(CN)(2)] gave the bis(lithio-isoindoline) derivative [C6H4C(=NH)N{Li(OEt2)}C=C(SiMe3)C(Bu(t))=N(SiMe3)]2 (5). The X-ray structures of 2, 3, 5 and 9 are presented, and reaction pathways for each reaction are suggested.  相似文献   

7.
The alkylation of the Brookhart-Gibson {2,6-[2,6-(i-Pr)2PhN=C(CH3)]2(C5H3N)} FeCl2 precatalyst with 2 equiv of LiCH2Si(CH3)3 led to the isolation of several catalytically very active products depending on the reaction conditions. The expected dialkylated species {2,6-[2,6-(i-Pr)2PhN=C(CH3)]2}(C5H3N)Fe(CH2SiMe3)2 (2) was indeed the major component of the reaction mixture. However, other species in which alkylation occurred at the pyridine ring ortho position, {2,6-[2,6-(i-Pr)2PhN=C(CH3)]2-2-CH2SiMe3}(C5H3N)Fe(CH2SiMe3) (1), and at the imine C atom, {2-[2,6-(i-Pr)2PhN=C(CH3)]-6-[2,6-(i-Pr)2PhNC(CH3)(CH2 SiMe3)](C5H3N)}Fe(CH2SiMe3) (3), have also been isolated and fully characterized. In addition, deprotonation of the methyl-imino functions and formation of a new divalent Fe catalyst {[2,6-[2,6-(i-Pr)2PhN-C=(CH2)]2(C5H3N)}Fe(mu-Cl)Li(THF)3 (4) also occurred depending on the reaction conditions. In turn, the formation of 4 might trigger the reductive coupling of two units through the methyl-carbon wings. This process resulted in the one-electron reduction of the metal center, affording a dinuclear Fe(I) alkyl catalyst {[{[2,6-(i-Pr)2C6H5]N=C(CH3)}(C5H3N){[2,6-(i-Pr)26H5]N=CCH2}Fe(CH2SiMe3)]}2 (5). Different from other metal derivatives, complex 5 could not be prepared from the monodeprotonated version of the ligand. Its reaction with a mixture of FeCl2 and RLi afforded instead [{2,6-[2,6-(i-Pr)2PhN-C=(CH2)]2(C5H3N)}FeCH2Si(CH3)3][Li(THF)4] (6) which is also catalytically active. All of these high-spin species have been shown to have high catalytic activity for olefin polymerization, producing polymers of two distinct natures, depending on the formal oxidation state of the metal center.  相似文献   

8.
Neutral zinc, cadmium, mercury(II), and ethylmercury(II) complexes of a series of phosphinothiol ligands, PhnP(C6H3(SH-2)(R-3))3-n (n = 1, 2; R = H, SiMe3) have been synthesized and characterized by IR and NMR ((1)H, (13)C, and (31)P) spectroscopy, FAB mass spectrometry, and X-ray structural analysis. The compounds [Zn{PhP(C6H4S-2)2}] (1) and [Cd{Ph2PC6H4S-2}2] (2) have been synthesized by electrochemical oxidation of anodic metal (zinc or cadmium) in an acetonitrile solution of the appropriate ligand. The presence of pyridine in the electrolytic cell affords the mixed complexes [Zn{PhP(C6H4S-2)2}(py)] (3) and [Cd{PhP(C6H4S-2)2}(py)] (4). [Hg{Ph2PC6H4S-2}2] (5) and [Hg{Ph2PC6H3(S-2)(SiMe3-3)}2] (6) were obtained by the addition of the appropriate ligand to a solution of mercury(II) acetate in methanol in the presence of triethylamine. [EtHg{Ph2PC6H4S-2}] (7), [EtHg{Ph2P(O)C6H3(S-2)(SiMe3-3)}] (8), [{EtHg}2{PhP(C6H4S-2)2}] (9), and [{EtHg}2{PhP(C6H3(S-2)(SiMe3-3))2}] (10) were obtained by reaction of ethylmercury(II) chloride with the corresponding ligand in methanol. In addition, in the reactions of EtHgCl with Ph2PC6H4SH-2 and with the potentially tridentate ligand PhP(C6H3(SH-2)(SiMe3-3)) 2, cleavage of the Hg-C bond was observed with the formation of [Hg{Ph2PC6H4S-2}2] (5) and [Hg(EtHg) 2{PhP(O)(C6H3(S-2)(SiMe3-3))2}2] (11), respectively, and the corresponding hydrocarbon. The crystal structures of [Zn3{PhP(C6H4S-2)2}2{PhP(O)(C6H4S-2)2}] (1*), [Cd2{Ph2PC6H4S-2}3{Ph2P(O)C6H4S-2}] (2*), 3, 5, 6, [EtHg{Ph2P(O)C6H4S-2}] (7*), 8, 9, [{EtHg}2{PhP(O)(C6H3(S-2)(SiMe3-3))2}] (10*), and 11 are discussed. The molecular structures of 1, 2, 4, 7, and 10 have also been studied by means of density functional theory (DFT) calculations.  相似文献   

9.
1INTRoDUCTIONMolybdenum(Tungsten)-copper-sulfurandmolydenum(tungsten)-iron-sulfurcompoundshavebeenstudiedextensivelybecauseoftheirconnectionwithbiologicalprocesses[l,2j.Someheterotrimetalliccomplexeshavebeensynthesized,suchas[NEt'jtPh,p)sAgSzMoSzCu(CN))and[NEt'jtPh,P),AgS,MooCu(CN)jt3i,[l(CH,CH,)'j(PPh,)2{AgS2WS2Cu}(CN)jt4i,[(CH,CH2)4j(PPh,)2{AgS,WOCu}(CN)j('3,butheterotrimetal1iccomplexescontainingtungsten,copper,andironatomshaveseldombeenreported.Onecomplexofthiskindha…  相似文献   

10.
Deacon GB  Forsyth CM  Junk PC  Wang J 《Inorganic chemistry》2007,46(23):10022-10030
The reaction of [Sm{N(SiMe3)2}2(THF)2] (THF=tetrahydrofuran) with carbodiimides RN=C=NR (R=Cy, C6H3-2,6-iPr2) led to the formation of dinuclear SmIII complexes via differing C-C coupling processes. For R=Cy, the product [{(Me3Si)2N}2Sm(micro-C2N4Cy4)Sm{N(SiMe3)2}2] (1) has an oxalamidinate [C2N4Cy4]2- ligand resulting from coupling at the central C atoms of two CyNCNCy moieties. In contrast, for R=C6H3-2,6-iPr2, H transfer and an unusual coupling of two iPr methine C atoms resulted in a linked formamidinate complex, [{(Me3Si)2N}2Sm{micro-(RNC(H)N(Ar-Ar)NC(H)NR)}Sm{N(SiMe3)2}2] (2) (Ar-Ar=C6H3-2-iPr-6-C(CH3)2C(CH3)2-6'-C6H3-2'-iPr). Analogous reactions of RN=C=NR (R=Cy, C6H3-2,6-iPr2) with the SmII "ate" complex [Sm{N(SiMe2)3Na] gave 1 for R=Cy, but a novel C-substituted amidinate complex, [(THF)Na{N(R)C(NR)CH2Si(Me2)N(SiMe3)}Sm{N(SiMe3)2}2] (3), for R=C6H3-2,6-iPr2, via gamma C-H activation of a N(SiMe3)2 ligand.  相似文献   

11.
Several azaheterometallocubane complexes containing [MTi3N4] cores have been prepared by the reaction of [{Ti(eta5-C5Me5)(mu-NH)}3(mu3-N)] (1) with zinc(II) and copper(I) derivatives. The treatment of 1 with zinc dichloride in toluene at room temperature produces the adduct [Cl2Zn{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (2). Attempts to crystallize 2 in dichloromethane gave yellow crystals of the ammonia adduct [(H3N)Cl2Zn{(mu3-NH)Ti3(eta5-C5Me5)3(mu-NH)2(mu3-N)}] (3). The analogous reaction of 1 with alkyl, (trimethylsilyl)cyclopentadienyl, or amido zinc complexes [ZnR2] leads to the cube-type derivatives [RZn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (R = CH2SiMe3 (5), CH2Ph (6), Me (7), C5H4SiMe3 (8), N(SiMe3)2 (9)) via RH elimination. The amido complex 9 decomposes in the presence of ambient light to generate the alkyl derivative [{Me3Si(H)N(Me)2SiCH2}Zn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (10). The chloride complex 2 reacts with lithium cyclopentadienyl or lithium indenyl reagents to give the cyclopentadienyl or indenyl zinc derivatives [RZn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (R = C5H5 (11), C9H7 (12)). Treatment of 1 with copper(I) halides in toluene at room temperature leads to the adducts [XCu{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (X = Cl (13), I (14)). Complex 13 reacts with lithium bis(trimethylsilyl)amido in toluene to give the precipitation of [{Cu(mu4-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}2] (15). Complex 15 is prepared in a higher yield through the reaction of 1 with [{CuN(SiMe3)2}4] in toluene at 150 degrees C. The addition of triphenylphosphane to 15 in toluene produces the single-cube compound [(Ph3P)Cu{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (16). The X-ray crystal structures of 3, 8, 9, and 15 have been determined.  相似文献   

12.
Niemeyer M 《Inorganic chemistry》2006,45(22):9085-9095
The scope of hypersilyl potassium, KHyp [Hyp = Si(SiMe3)3], as a silylation or deprotonation agent for some rare-earth bis(trimethylsilyl)amides has been explored. Thus, the reaction with Yb{N(SiMe3)2}2 affords the addition product [K][YbHyp{N(SiMe3)2}2] (2) in high yield, which contains a three-coordinate ytterbium atom, therefore representing the first example of a lanthanide silyl with a coordination number lower than 6. In contrast, deprotonation on the periphery is observed with the tris(amides) Ln{N(SiMe3)2}3 (Ln = Y, Yb) and compounds of the type [K][CH2Si(Me)2N(SiMe3)Ln{N(SiMe3)2}2] (Ln = Y (3), Yb (4)) are isolated. Crystallization of 3 from a mixture of benzene and heptane afforded the bis(benzene) solvate [(C6H6)2K][CH2Si(Me)2N(SiMe3)Y{N(SiMe3)2}2] (3a). The reaction between the strong bases nBuLi/tetramethylenediamine (TMEDA) or tBuLi with Y{N(SiMe3)2}3 or Yb{N(SiMe3)2}3 yielded the deprotonation product [(tmeda)Li][CH2Si(Me)2N(SiMe3)Y{N(SiMe3)2}2] (6) and the reduction product [LiYb{N(SiMe3)2}3] (7), respectively. Instead of the expected bimetallic product, the reaction between YbI(2) and 2 equiv of 3 gave the neutral complex [Y{CH2Si(Me)2N(SiMe3)}{N(SiMe3)2}(thf)] (8) in good yield. The compounds have been characterized by melting point, elemental analysis, IR spectroscopy, and X-ray crystallography and for selected species by 1H, 13C, 29Si, and 171Yb NMR spectroscopy. For 3a and 4, the nature of the bonding between the carbanionic centers and the lanthanide and potassium cations was studied by density functional theory calculations.  相似文献   

13.
The coordination chemistry of the bis(dimethylphenylsilyl)amide ligand, [N(SiMe2Ph)2]1-, with sodium, potassium, and lanthanum has been investigated for comparison with the more commonly used [N(SiMe3)2]1- and [N(SiHMe2)2]1- ligands. HN(SiMe2Ph)2 reacts with KH to produce KN(SiMe2Ph)2, 1, which crystallizes from toluene as the dimer [KN(SiMe2Ph)2(C7H8)]2, 2. The structure of 2 shows that the [N(SiMe2Ph)2]1- ligand can function as a polyhapto ligand with coordination from each phenyl group as well as the normal nitrogen ligation and agostic methyl interactions common in methylsilylamides. Each potassium in 2 is ligated by an eta4-toluene, two bridging nitrogen atoms, and an eta2-phenyl, an eta1-phenyl, and an eta1-methyl group. KN(SiMe2Ph)2 crystallizes from toluene in the presence of 18-crown-6 to make the monometallic complex (18-crown-6)KN(SiMe2Ph)2, 3, in which [N(SiMe2Ph)2]1- functions as a simple monodentate ligand through nitrogen. The reaction of HN(SiMe2Ph)2 with NaH in THF at reflux for 2 days generates Na[N(SiMe2Ph)2], 4, which crystallizes as the solvated dimer {(THF)Na[mu-eta1:eta1-N(SiMe2Ph)2]}2, 5. A lanthanide metallocene derivative of [N(SiMe2Ph)2]1- was obtained by reaction of K[N(SiMe2Ph)2] with [(C5Me5)2La][(mu-Ph)2BPh2]. Crystals of (C5Me5)2La[N(SiMe2Ph)2], 6, show agostic interactions between lanthanum and methyl groups of each silyl substituent. The [N(SiMe3)2]1- analogue of 3, (18-crown-6)KN(SiMe3)2, 7, was also structurally characterized for comparison.  相似文献   

14.
Trialkyl imido niobium and tantalum complexes [MR(3)(NtBu)] (M = Nb, R = Me 2, CH(2)CMe(3)3, CH(2)CMe(2)Ph 4, CH(2)SiMe(3)5; M = Ta, R = Me 6, CH(2)CMe(2)Ph 7, CH(2)SiMe(3)8) have been prepared by treatment of solutions containing [MCl(3)(NtBu)py(2)] (M = Nb 1a, Ta 1b) with three equivalents of magnesium reagent. By an unexpected hydrolysis reaction of the tris-trimethylsilylmethyl imido tantalum compound 8a, a μ-oxo derivative [(Me(3)SiCH(2)O)(Me(3)SiCH(2))(3)Ta(μ-O)Ta(CH(2)SiMe(3))(2)(NtBu)] (8a) was formed and its structure was studied by X-ray diffraction methods. Reactions of trialkyl imido compounds with two equivalents of isocyanide 2,6-Me(2)C(6)H(3)NC result in the migration of two alkyl groups, leading to the formation of a series of alkyl imido bisiminoacyl derivatives [MR(NtBu){C(R)NAr}(2)] (Ar = 2,6-Me(2)C(6)H(3); M = Nb, R = Me 9, CH(2)CMe(3)10, CH(2)CMe(2)Ph 11, CH(2)SiMe(3)12, CH(2)Ph 13; M = Ta, R = CH(2)CMe(3)14, CH(2)CMe(2)Ph 15, CH(2)SiMe(3)16). All compounds were studied by IR and NMR ((1)H, (13)C and (15)N) spectroscopy.  相似文献   

15.
The deprotection of phosphonium chloride salts [PR2(CH2OH)2]+Cl- and subsequent condensation reaction with N-methyl-2-aminopyridine has been carried out to give a series of ligands of the form PR2CH2N(CH3)C5H4N (R=Ph , Cy , t-Bu ) which have been fully characterised either as the pure ligand () or the air stable borane adducts (R=Cy , t-Bu ). The 1:1 reactions of , and with PdCl2(COD) gave the N,P chelate complexes [Pd{PR2CH2N(CH3)C5H4N}Cl2]; the Cy () and t-Bu () complexes were characterised by X-ray crystallography. The bisligated species [Pd{PCy2CH2N(CH3)C5H4N}2Cl2] () was obtained when the reaction was carried out at higher temperatures and the ligands were found to be coordinated to the metal in a trans configuration through the phosphorus donors. Abstraction of the chlorides from the bis-ligated species , using silver salts, resulted in the coordination of the pyridine ring forming the bis-chelate complex [Pd{PCy2CH2N(CH3)C5H4N}2]2+. In comparison, the palladium bis-chelate complex of ligand [Pd{PPh2CH2N(CH3)C5H4N}2]2+ () was shown to form in a cis configuration and was fully characterised by X-ray crystallography.  相似文献   

16.
Reactions of lithium dialkyl/phenyl phosphanylmethylides, RR'PCH(X)Li (R, R' = Me, Et, Ph and R = Me, R' = Ph; X = H or Me), with sulfur diimides S(NR')2 (R' = (t)Bu or SiMe3) in an equimolar ratio yielded Janus head complexes with the structural motif [Li{RR'PCH(X)S(NR')2}]2 (R' = (t)Bu, SiMe3). The basic core of these dimeric complexes is composed of a (LiN)(2) four-membered ring containing two four-coordinated lithium atoms. A lithium complex of the new Janus head ligand with another structural motif [TMEDA·Li{Ph(2)PCH(2)S(NSiMe3)2}] (6) could be isolated from the reaction of [Ph2PCH2Li·TMEDA] with S(NSiMe3)2. Two monomeric complexes [Mg{Me2PCH2S(NR')2}2] (7, 8) were synthesised by a straightforward reaction of [Li{Me2PCH2S(NR')2}2] with MgCl2 in pentane. The magnesium atom is chelated by one phosphorus atom and two nitrogen atoms of each unit of the hemilabile ligand in a tripodal manner, leading to octahedral geometry around the magnesium cation. A complete analysis of [Ph2PCH2(SNSiMe3)(HNSiMe3)] (9) is also described in which one nitrogen atom of the imido moiety is protonated.  相似文献   

17.
The crystalline compounds [Mg(Br)(L)(thf)].0.5Et2O [L = {N(R)C(C6H3Me2-2,6)}2SiR, R = SiMe3] (1), [Mg(L){N=C=C(C(Me)=CH)2CH2}(D)2] [D = NCC6H3Me2-2,6 (2), thf (3)] and [{Mg(L)}2{mu-OSO(CF3)O-[mu}2] (4) were prepared from (a) Si(Br)(R){C(C6H3Me2-2,6)=NR}2 and Mg for (1), (b) [Mg(SiR3)2(thf)2] and 2,6-Me2C6H3CN (5 mol for (2), 3 mol for (3)), and (c) (2) + Me3SiOS(O)2CF3 for (4); a coproduct from (c) is believed to have been the trimethylsilyl ketenimide Me3SiN=C=C{C(Me)=CH}2CH2 (5).  相似文献   

18.
Volatile 1,1-dimethyl-2-(trimethylsilyl)hydrazido(1-) complexes of niobium, tantalum, molybdenum, and tungsten have been synthesized and fully characterized for use as precursors in their chemical vapor deposition to metal nitrides. Different reaction patterns were observed in the hydrazinolysis of imido complexes of those four metals with (trimethylsilyl)dimethylhydrazine HN(SiMe3)NMe2 (H-TDMH). [Ta(NtBu)Cl3Py2] gave [Ta(TDMH)2Cl3] (1) with loss of the imido functionality, and [M(NtBu)2Cl2Py2] gave [M(NtBu)2(TDMH)Cl] (M = W, 8a; Mo, 8b). Reactions of both types of metal imido complexes with magnesium hydrazides produced [M(NtBu)(TDMH)2X] (M = Ta, X = Cl, 2a; X = Br, 3a; M = Nb, X = Cl, 2b; X = Br, 3b) and [M(NtBu)2(TDMH)X] (M = W, X = Cl, 8a; X = Br, 9a; M = Mo, X = Cl, 8b; X = Br, 9b). Halogen substitution reactions at 2 and 3 by -NMe2, -NHtBu, and CH2Ph groups as well as imido ligand replacement reactions have been investigated. The results of crystal structure determinations of 1, 4a, 5a, 6a, 7b, and 9b are presented.  相似文献   

19.
The synthesis and reactivity of [Tp*Zr(CH2Ph)2][B(C6F5)4] (2, Tp* = HB(3,5-Me2pz)3, pz = pyrazolyl) have been explored to probe the possible role of Tp'MR2+ species in group 4 metal Tp'MCl3/MAO olefin polymerization catalysts (Tp' = generic tris(pyrazolyl)borate). The reaction of Tp*Zr(CH2Ph)3 (1) with [Ph3C][B(C6F5)4] in CD2Cl2 at -60 degrees C yields 2. 2 rearranges rapidly to [{(PhCH2)(H)B(mu-Me2pz)2}Zr(eta2-Me2pz)(CH2Ph)][B(C6F5)4] (3) at 0 degrees C. Both 2 and 3 are highly active for ethylene polymerization and alkyne insertion. Reaction of 2 with excess 2-butyne yields the double insertion product [Tp*Zr(CH2Ph)(CMe=CMeCMe=CMeCH2Ph)][B(C6F5)4] (4). Reaction of 3 with excess 2-butyne yields [{(PhCH2)(H)B(mu-Me2pz)2}Zr(Cp*)(eta2-Me2pz)][B(C6F5)4] (6, Cp* = C5Me5) via three successive 2-butyne insertions, intramolecular insertion, chain walking, and beta-Cp* elimination.  相似文献   

20.
The first series of Rh(I) distibine complexes with organometallic co-ligands is described, including the five-coordinate [Rh(cod)(distibine)Cl], the 16-electron planar cations [Rh(cod)(distibine)]BF4 and [Rh{Ph2Sb(CH2)3SbPh2}2]BF4 and the five-coordinate [Rh(CO)(distibine)2][Rh(CO)2Cl2] (distibine=R2Sb(CH2)3SbR2, R=Ph or Me, and o-C6H4(CH2SbMe2)2). The corresponding Ir(I) species [Ir(cod)(distibine)]BF4 and [Ir{Ph2Sb(CH2)3SbPh2}2]BF4 have also been prepared. The complexes have been characterised by 1H and 13C{1H} NMR and IR spectroscopy, electrospray mass spectrometry and microanalysis. The crystal structure of the anion exchanged [Rh(CO){Ph2Sb(CH2)3SbPh2}2]PF(6).3/4CH2Cl2 is also described. The methyl-substituted distibine complexes are less stable than the complexes of Ph2Sb(CH2)3SbPh2, with C-Sb fission occurring in some of the complexes of the former. The salts [Rh(CO){Ph2Sb(CH2)3SbPh2}2]PF6 and [Rh{Ph2Sb(CH2)3SbPh2}2]BF4 undergo oxidative addition with Br2 to give the known [RhBr2{Ph2Sb(CH2)3SbPh2}2]+, while using HCl gives the same hydride complex from both precursors, which is tentatively assigned as [RhHCl2{Ph2Sb(CH2)3SbPh2}]. An unexpected further Rh(III) product from this reaction, trans-[RhCl2{Ph2Sb(CH2)3SbPh2}{PhClSb(CH2)3SbClPh}]Cl, was identified by a crystal structure analysis and represents the first structurally characterised example of a chlorostibine coordinated to a metal. [Rh{Ph2Sb(CH2)3SbPh2}2]BF4 reacts with CO to give [Rh(CO){Ph2Sb(CH2)3SbPh2}2]BF4 initially, and upon further exposure this species undergoes further reversible carbonylation to give a cis-dicarbonyl species thought to be [Rh(CO)2{Ph2Sb(CH2)3SbPh2}{kappa1Sb-Ph2Sb(CH2)3SbPh2}]BF4 which converts back to the monocarbonyl complex when the CO atmosphere is replaced with N2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号