首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The organic solvent was shown to determine the structure of copper(II) 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (CuPc) in the CuPc-polystyrene composite during the formation of the latter. The structure and morphology of the resulting nanocomposite films was studied by atomic force and transmission electron microscopy. Different physical structures of CuPc formed in different solvents (cyclohexane, toluene, chloroform, and trichloroethylene).  相似文献   

2.
An interesting series of heterocyclic base adducts of oxovanadium(IV) complexes have been synthesized by the reaction of vanadium(IV) oxide acetylacetonate with some hydrazones (H(2)L) in the presence of a heterocyclic base 2,2'-bipyridine. The compounds were characterized by analytical and different physico-chemical techniques like IR, electron paramagnetic resonance (EPR) and UV-Vis spectral studies and magnetic studies. The EPR spectra indicate that the free electron is in the d(xy) orbital. The coordination geometry around oxovanadium(IV) in all complexes is octahedral, with one dibasic tridentate ligand L(2-), and one bidentate heterocyclic base. The IR spectra suggest that coordination takes place through azomethine nitrogen and enolate oxygen from the hydrazide moiety and phenolate oxygen. The pyridyl nitrogens of the hydrazones, H(2)L(2) and H(2)L(4) are not involved in the coordination. The molar conductivities show that all the complexes are non-electrolytes. All electronic transitions were assigned. All the compounds are paramagnetic. EPR studies of all compounds suggest axial symmetry. The calculated bonding parameters indicate that in-plane sigma bonding is more covalent than in-plane pi bonding.  相似文献   

3.
The structural properties of Langmuir monolayers on aqueous substrates of a metal free phthalocyanine, 2,9,16,23-tetrakis(phenylthio)-29H,31H-phthalocyanine and an Aluminum centered phthalocyanine, Aluminum 2,9,16,23-tetrakis(phenylthio)-29H,31H-phthalocyanine chloride are reported here. Their structure is investigated under progressive lateral compression by grazing incidence diffuse X-ray scattering out of the specular plane to determine specular reflectivity-like information where the phase change of the molecules from "flat-lying" on the surface to "edge-standing" perpendicular to the surface was directly observed. Furthermore grazing incident X-ray diffraction is used to investigate the in-plane ordering of the system where it has been found that at high density states the systems can be considered as monolayers consisting of arrays of side-by-side cofacially aggregated cylindrical rodlike entities.  相似文献   

4.
N-confused or inverted porphyrins, a family of porphyrin isomers that contain a confused pyrrole ring connected through its alpha and beta' positions in the macrocycle, exhibit unique physical and chemical properties, like, for instance, the ability to stabilize unusual oxidation states of metals due to the reactivity of the inverted pyrrole. In this Article, a combined multifrequency continuous-wave and pulse electron paramagnetic resonance (EPR) study of the copper(II) complex of N-confused tetraphenylporphyrin (TPP) is presented. By use of pulse EPR methods like ENDOR and HYSCORE, the magnetic interactions between the unpaired electron of the compound and the surrounding nitrogen nuclei were revealed. Through 13C labeling of the macrocycle, a detailed study of the carbon hyperfine interaction became possible and provided further insight into the character of the metal-carbon bond. The observed hyperfine couplings of the ligand atoms in the first coordination sphere showed the presence of a remarkably strong sigma Cu-C bond and allowed for a detailed analysis of the spin delocalization over the porphyrin macrocycle. Interestingly, it was found that the observed delocalization is approximately 11% larger than the corresponding one for CuTPP.  相似文献   

5.
A new Schiff base derived from tyrosine and salicylidene and its copper(Ⅱ ) complex have been synthesized and characterized by elemental analyses,molar conductances,thermal analyses,infrared spectra,electronic spectra and EPR spectra.The composition of the complex is K[CuL(Ac)]· H2O, where L=H13C16NO4.EPR spectra of the copper(Ⅱ) complex were investigated in various solvents at different temperatures.It is found that the linewidth of four hyperfine lines on solution spectra at room temperature is unequal and changes with mⅠ ,this could be satisfactorily explained by the relaxation effect.The relaxation time and the relaxation rate were calculated.By using spectral parameters from solution spectra at low temperature,the bonding parameters of Cu(Ⅱ ) complex were calculated.The bonding characterization and stability of the complex were disscussed.The results show that the in-plane σ -bond and the in-plane π -bond in the complex all play an important role.  相似文献   

6.
Experimental EPR data for copper(II) complexes with liquid-crystal poly(propylenimine) den-drimers were analyzed. The influence of the pseudotetrahedral distortion of the nearest environment of the copper ion on the parameters of the EPR spectra was considered. The covalent bond parameters were calculated from the EPR data. The dependence of the delocalization of the unpaired electron of the copper ion on the pseudotetrahedral distortion of its coordination unit was determined. The behavior of the Zeeman coupling parameters was discussed. Various contributions to the components of the hyperfine coupling (HFC) tensor were calculated. The causes of the changes in the HFC parameters in the distorted complexes were dis cussed.  相似文献   

7.
The d5 low-spin Tc(II) complex trichloro-nitrosyl-bis(dimethylphenyl-phosphine)technetium(II) was studied by EPR at 295 ≥ T ≥ 27.2 K. In the room-temperature spectrum well-resolved 99Tc hyperfine splitting is observed indicating a ground state for the unpaired electron which is well separated from other orbital states. At low temperatures the spectrum can be fitted by an axial spin Hamiltonian. The analysis of the 99Tc hyperfine splitting shows remarkable covalent interactions with the “in-plane” ligands. The 31P superhyperfine splitting observed was used to get information about the overall spin density distribution in the molecular orbital of the unpaired electron.  相似文献   

8.
酞菁和酞菁铜的三阶非线性光学性质   总被引:1,自引:0,他引:1  
封继康  李君  孙家钟 《化学学报》1994,52(6):539-544
用INDO/SDCI方法研究了酞菁和酞菁铜的电子结构, 紫外-可见光谱, 三阶非线性光学系数及其色散效应, 发现酞菁铜中Cu^2+对γ的贡献很小, 故酞菁与酞菁铜的γ几乎相等, 我们的计算结果对此进行了合理的解释。  相似文献   

9.
Self-assembled functionalized aromatic thiols (oligophenylenes composed of building blocks of dimethoxy-substituted phenylenes, perfluoro-substituted phenylenes, and a terminal thiol group) were used to tune the hole injection barrier (Delta(h)) of copper(II) phthalocyanine (CuPc) on Au(111). Synchrotron-based high-resolution photoemission spectroscopy study reveals a significant reduction of Delta(h) by as much as 0.75 eV from Delta(h) = 0.9 eV for CuPc/Au(111) to Delta(h) = 0.15 eV for CuPc/BOF/Au(111), where BOF represents 4-pentafluorophenyl-1-(p-thiophenyl)-2,5-dimethoxybenzene. The delocalized pi orbitals of these functionalized aromatic thiols greatly facilitate effective charge transfer (hole or electron) across the SAM interface as compared to alkanethiols, hence making this novel interface modification scheme a simple and effective way to tune the hole injection barrier. This method has potential applications in molecular electronics, organic light-emitting diodes (OLED), organic field-effect transistors (OFETs), and organic solar cells.  相似文献   

10.
Walker FA 《Inorganic chemistry》2003,42(15):4526-4544
Pulsed EPR spectroscopic techniques, including ESEEM (electron spin echo envelope modulation) and pulsed ENDOR (electron-nuclear double resonance), are extremely useful for determining the magnitudes of the hyperfine couplings of macrocycle and axial ligand nuclei to the unpaired electron(s) on the metal as a function of magnetic field orientation relative to the complex. These data can frequently be used to determine the orientation of the g-tensor and the distribution of spin density over the macrocycle, and to determine the metal orbital(s) containing unpaired electrons and the macrocycle orbital(s) involved in spin delocalization. However, these studies cannot be carried out on metal complexes that do not have resolved EPR signals, as in the case of paramagnetic even-electron metal complexes. In addition, the signs of the hyperfine couplings, which are not determined directly in either ESEEM or pulsed ENDOR experiments, are often needed in order to translate hyperfine couplings into spin densities. In these cases, NMR isotropic (hyperfine) shifts are extremely useful in determining the amount and sign of the spin density at each nucleus probed. For metal complexes of aromatic macrocycles such as porphyrins, chlorins, or corroles, simple rules allow prediction of whether spin delocalization occurs through sigma or pi bonds, and whether spin density on the ligands is of the same or opposite sign as that on the metal. In cases where the amount of spin density on the macrocycle and axial ligands is found to be too large for simple metal-ligand spin delocalization, a macrocycle radical may be suspected. Large spin density on the macrocycle that is of the same sign as that on the metal provides clear evidence of either no coupling or weak ferromagnetic coupling of a macrocycle radical to the unpaired electron(s) on the metal, while large spin density on the macrocycle that is of opposite sign to that on the metal provides clear evidence of antiferromagnetic coupling. The latter is found in a few iron porphyrinates and in most iron corrolates that have been reported thus far. It is now clear that iron corrolates are remarkably noninnocent complexes, with both negative and positive spin density on the macrocycle: for all chloroiron corrolates reported thus far, the balance of positive and negative spin density yields -0.65 to -0.79 spin on the macrocycle. On the other hand, for phenyliron corrolates, the balance of spin density on the macrocycle is zero, to within the accuracy of the calculations (Zakharieva, O.; Schünemann, V.; Gerdan, M.; Licoccia, S.; Cai, S.; Walker, F. A.; Trautwein, A. X. J. Am. Chem. Soc. 2002, 124, 6636-6648), although both negative and positive spin densities are found on the individual atoms. DFT calculations are invaluable in providing calculated spin densities at positions that can be probed by (1)H NMR spectroscopy, and the good agreement between calculated spin densities and measured hyperfine shifts at these positions leads to increased confidence in the calculated spin densities at positions that cannot be directly probed by (1)H NMR spectroscopy. (13)C NMR spectroscopic investigations of these complexes should be carried out to probe experimentally the nonprotonated carbon spin densities.  相似文献   

11.
There are two types of electron configurations, (d(xy))(2)(d(xz), d(yz))(3) and (d(xz), d(yz))(4)(d(xy))(1), in low-spin iron(III) porphyrin complexes. To reveal the solvent effects on the ground-state electron configurations, we have examined the (13)C- and (1)H-NMR spectra of low-spin dicyano[meso-tetrakis(2,4,6-triethylphenyl)porphyrinato]ferrate(III) in a variety of solvents, including protic, dipolar aprotic, and nonpolar solvents. On the basis of the NMR study, we have reached the following conclusions: (i) the complex adopts the ground state with the (d(xz), d(yz))(4)(d(xy))(1) electron configuration, the (d(xz), d(yz))(4)(d(xy)())(1) ground state, in methanol, because the d(pi) orbitals are stabilized due to the O-H...N hydrogen bonding between the coordinated cyanide and methanol; (ii) the complex also exhibits the (d(xz), d(yz))(4)(d(xy))(1) ground state in nonpolar solvents, such as chloroform and dichloromethane, which is ascribed to the stabilization of the d(pi) orbitals due to the C-H...N weak hydrogen bonding between the coordinated cyanide and the solvent molecules; (iii) the complex favors the (d(xz), d(yz))(4)(d(xy))(1) ground state in dipolar aprotic solvents, such as DMF, DMSO, and acetone, though the (d(xz), d(yz))(4)(d(xy))(1) character is less than that in chloroform and dichloromethane; (iv) the complex adopts the (d(xy))(2)(d(xz), d(yz))(3) ground state in nonpolar solvents, such as toluene, benzene, and tetrachloromethane, because of the lack of hydrogen bonding in these solvents; (v) acetonitrile behaves like nonpolar solvents, such as toluene, benzene, and tetrachloromethane, though it is classified as a dipolar aprotic solvent. Although the NMR results have been interpreted in terms of the solvent effects on the ordering of the d(xy) and d(pi) orbitals, they could also be interpreted in terms of the solvent effects on the population ratios of two isomers with different electron configurations. In fact, we have observed the unprecedented EPR spectra at 4.2 K which contain both the axial- and large g(max)-type signals in some solvents such as benzene, toluene, and acetonitrile. The observation of the two types of signals has been ascribed to the slow interconversion on the EPR time scale at 4.2 K between the ruffled complex with the (d(xz), d(yz))(4)(d(xy))(1) ground state and, possibly, the planar (or nearly planar) complex with the (d(xy))(2)(d(xz), d(yz))(3) ground state.  相似文献   

12.
Evolution of ordered films of copper phthalocyanine according to EPR data   总被引:1,自引:0,他引:1  
The procedure for calculating the orientation distribution of molecules using the angular dependence of EPR spectra was employed to study copper(II) phthalocyanine (CuPc) films varying in thickness and obtained by depositing the molecular complex on flat quartz plates. At the first stage of deposition, a layer of the α-CuPc phase with preferable orientation of molecular stacks along the plate surface is formed. At the second stage, a layer with an orthogonal arrangement of molecular stacks is condensed over the first layer. The interaction with NO2 forms CuPc binuclear associates. Analysis of the EPR spectra made it possible to determine the symmetry of the structure and the distance between the paramagnetic Cu2+ ions; the structure of the associates has been proposed. The orientation distribution of CuPc dimers in the film depends both on the initial ordering in the film and on processing conditions. Strong disordering of molecular stacks in ordered films during the α-CuPc to α-CuPc phase transition has been found.  相似文献   

13.
VO(2+) doped single crystal of Ba(2)Zn(HCOO)(6)(H2O)(4) (BZFA) were investigated using electron paramagnetic resonance (EPR) technique at ambient temperature. Detailed investigation of EPR spectra indicated that the VO(2+) substitutes the Zn(2+) in the structure. The sites with different orientations were observed for VO(2+) in Ba(2)Zn(HCOO)(6)(H2O)(4).single crystal, but the only intense site among these sites was evaluated to obtain spin-Hamiltonian parameters, which are the principal axis values of the g and the hyperfine tensors. The covalent bonding parameter for VO(2+) and Fermi contact term were calculated using the spin-Hamiltonian parameters.  相似文献   

14.
Covalent bonding in a number of copper(II) complexes with hetarylformazans that have pseudotetrahedral or square-planar symmetry of the nearest metal environment was analyzed from EPR spectra. The dependence of the unpaired electron delocalization on the pseudotetrahedral distortion of the coordination polyhedron was determined. A change in the Zeeman coupling parameters was interpreted. Various contributions to the components of the hyperfine coupling (HFC) and ligand hyperfine coupling (LHFC) tensors were calculated. pd-Mixing of the AO of the copper ion was found to have a slight effect on the HFC parameters. In the components of the LHFC tensor, the contribution from isotronic LHFC is decisive.  相似文献   

15.
Multifrequency electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) techniques were used to obtain structural information about the copper(II)-chelidamate complex. Well-resolved nitrogen ENDOR spectra could be recorded from solid solution samples by using selective excitation of spin packets. Evaluation of nuclear quadrupole and dipolar hyperfine interaction of the directly ligated nitrogen allowed for an identification of the bond direction to the copper ion within the eigen frame of the copper g-matrix. Invoking two-dimensional EPR techniques, additional hyperfine interaction with a "distant" nitrogen spin, identified as resulting from the solvent dimethylformamide (DMF), was observed. The experimental data are only consistent with formation of a stable pseudoplanar copper complex with single solvent ligation via its oxygen atom.  相似文献   

16.
EPR Investigations on a Copper Chelate of anα-Cyano-β-amino-dithioacryl Acid Ester EPR studies on copper(II) chelates of anα-cyano-β-amino-dithioacryl acid ester are reported. The EPR spectra were obtained from solutions, diamagnetically diluted powders, and single-crystals which are stable for a short time only. The corresponding nickel(II) chelate was used as host lattice. The 14N ligand hyperfine structure observed in the spectra is in agreement with a [CuN2S2] coordination sphere. In some orientations of the recorded angular dependencies the EPR spectra show a hyperfine splitting due to the interaction of the unpaired electron with the N? H protons. In addition spin flip satellite lines are observed in the single-crystal spectra. The g, ACu and AN tensors obtained from the powder and single-crystal spectra have an axial symmetry within the experimental errors. The unpaired electron occupies a MO which consists mainly of the copper 3dxy and the corresponding donor atom orbitals. The co-valency of the metal ligand bond is very high.  相似文献   

17.
The parameters of the EPR spectra of complexes containing paramagnetic ions with an unpaired ns electron (ns 1 ions) were interpreted. The effect of the ligand spin-orbital coupling on the parameter of the Zeeman splitting was discussed. The effect of spin polarization on the parameters of hyperfine and ligand hyperfine couplings was considered. The reasons for the anomalous behavior of the EPR parameters were noted. The character of the covalent bonding was analyzed from the EPR spectra. The anomalous behavior of the parameters of ligand hyperfine couplings in tetragonal complexes with ns 1 ions was discussed.  相似文献   

18.
In the present work, we have investigated the molecular orientation of phthalocyanine films deposited on polycrystalline gold. Three films built from the following molecules are investigated: phthalocyanine (H(2)Pc), cobalt phthalocyanine (CoPc) and copper phthalocyanine (CuPc). The films are prepared by spin coating and drop casting methods. Orientation analysis has been performed using polarization dependent Fourier transform infrared (FTIR) spectroscopy using transmission and grazing angle reflectance mode. The FTIR study suggests that each phthalocyanine film contains both alpha- and beta-phases. H(2)Pc based films demonstrate deposition method dependence on the molecular orientation, while the CuPc and CoPc films preserve their molecular orientation independent of deposition method. Grazing angle analysis also suggests that CoPc films show negligible preferred orientation irrespective of film deposition methods. In literature, the band at 878cm(-1) in CuPc has been assigned to out-of-plane bending of C-H. Our grazing angle experiments suggest that this band cannot be assigned to out-of-plane bending vibrations of C-H. Accurate band assignments are also described here for the phthalocyanine system.  相似文献   

19.
We present a novel electrochemical approach to grow copper phthalocyanine (CuPc) thin-film photoelectrodes through anodic oxidation of copper and dilithium phthalocyanine (Li2Pc). This circumvents the challenges associated with the electrochemical processing of unsubstituted CuPc from solution. The potentiostatic co-electrooxidation reaction at the heterogeneous interface favors the growth of CuPc thin film. The surface morphology of thin film exhibits nanorod-like features. UV-Vis, grazing angle Fourier transform infrared (FTIR), and grazing angle X-ray diffraction patterns reveal that the nanocrystalline phase corresponds only to α-CuPc and no admixture of other polymorphs. Photocurrent measurement shows a stable photoresponse in neutral medium. The photoelectrochemical hydrogen evolution on p-type CuPc coated copper photocathode shows an enhanced activity over bare copper and indium tin oxide (ITO) electrodeposited with CuPc and monolithium phthalocyanine radical (LiPc) thin films.  相似文献   

20.
Metal-thiolate active sites play major roles in bioinorganic chemistry. The M--S(thiolate) bonds can be very covalent, and involve different orbital interactions. Spectroscopic features of these active sites (intense, low-energy charge transfer transitions) reflect the high covalency of the M--S(thiolate) bonds. The energy of the metal-thiolate bond is fairly insensitive to its ionic/covalent and pi/sigma nature as increasing M--S covalency reduces the charge distribution, hence the ionic term, and these contributions can compensate. Thus, trends observed in stability constants (i.e., the Irving-Williams series) mostly reflect the dominantly ionic contribution to bonding of the innocent ligand being replaced by the thiolate. Due to high effective nuclear charges of the Cu(II) and Fe(III) ions, the cupric- and ferric-thiolate bonds are very covalent, with the former having strong pi and the latter having more sigma character. For the blue copper site, the high pi covalency couples the metal ion into the protein for rapid directional long range electron transfer. For rubredoxins, because the redox active molecular orbital is pi in nature, electron transfer tends to be more localized in the vicinity of the active site. Although the energy of hydrogen bonding of the protein environment to the thiolate ligands tends to be fairly small, H-bonding can significantly affect the covalency of the metal-thiolate bond and contribute to redox tuning by the protein environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号