首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the low-temperature phase diagrams of the systems MBr-MI (M = Li, Na, K, Rb, or Cs) via global exploration of the enthalpy landscapes for many different compositions, leading to candidates for solid solution-like and ordered crystalline phases. For all of these candidates the free enthalpies are computed at the ab initio level, and the low-temperature phase diagrams of the five chemical systems are derived. We find not only the expected stable solid solution in the rocksalt structure type but also metastable solid solutions based on the CsCl type for the RbBr-RbI and CsCl-CsI systems. Furthermore, additional metastable structure candidates exhibiting ordered crystalline structures exist for several compositions. In the case of the LiBr-LiI system, the metastable solid solution based on the wurtzite type was generated, and the location of the miscibility gap was predicted.  相似文献   

2.
The authors have calculated the low-temperature phase diagrams for the ternary alkali halides KBr-NaBr, KX-RbX, and LiX-RbX (X=Cl,Br) systems on the ab initio level without any recourse to experimental information. Via global exploration of the enthalpy landscapes for many different compositions in these systems, candidates for both ordered stoichiometric modifications and crystalline solid solution phases have been identified. Next, their free enthalpies were computed on ab initio level, and the respective low-temperature phase diagram has been derived. They find miscibility gaps in the systems KBr-NaBr and KX-RbX (X=Cl,Br), while in LiX-RbX (X=Cl,Br) only crystalline ordered phases should be present, in agreement with available experimental data. Furthermore, they predict several new thermodynamically stable and metastable phases in these systems.  相似文献   

3.
In this work, the solubilities of the salt minerals and the densities of solution in two ternary systems sodium chloride–zinc chloride–water and magnesium chloride–zinc chloride–water were measured at 373 K using an isothermal solution saturation method. Based on the determined equilibrium solubility data and the corresponding equilibrium solid phase, the phase diagrams and density diagrams of the two systems were plotted. The results show that the two ternary systems are complex and the eutectic points, the univariant solubility curves and the solid crystalline phase regions are shown and discussed. The phase diagram of the ternary system NaCl?ZnCl2?H2O at 373 K is constituted of two eutectic points, three univariant solubility curves and three solid crystalline phase regions corresponding to NaCl, ZnCl2 and 2NaCl · ZnCl2. And the phase diagram of the ternary system MgCl2?ZnCl2?H2O at 373 K includes two eutectic points, three univariant solubility curves and three solid crystalline phase regions corresponding to MgCl2 · 6H2O, MgCl2 · ZnCl2 · 5H2O and ZnCl2. The experimental results were simply discussed.  相似文献   

4.
We have calculated the low-temperature phase diagrams for the ternary alkali halides CsX–LiX (X = F, Cl, Br, I) at an ab initio level without any recourse to experimental information. The starting point of our general approach is the global exploration of the enthalpy landscapes for many different compositions in these systems. Candidates for both ordered stoichiometric modifications and crystalline solid-solution phases are identified, and their free enthalpies are computed at an ab initio level. From this the low-temperature phase diagrams are derived. We find that in all systems under investigation only crystalline ordered phases should be present, in agreement with available experimental data. Furthermore, we predict several new thermodynamically stable and metastable phases in these systems.  相似文献   

5.
The phase equilibria of quaternary system NaCl-NaBr-Na2B4O7-H2O at 348 K were studied by the isothermal equilibrium method. The solubilities and densities of the equilibrium solution were determined. According to the experimental data, the phase diagram, density-composition diagrams and water content diagram of the quaternary system at 348 K were plotted respectively. And the phase diagram consists of one univariant curve, two crystallization fields and without any invariant point of the quaternary system. The equilibrium solid phases of the two crysta- llization fields were Na(Cl, Br) and Na2B4O7·5H2O. The experimental results show that the quaternary system contained solid solution. The densities of the solution decrease with increasing NaCl concentration and increase with increasing NaBr concentration.  相似文献   

6.
Two isotropic solution regions and several liquid crystalline regions occur in the ternary system sodium octanoate-octanoic acid-water at 20°C The solution regions are an aqueous solution and a solution of sodium octanoate and water in liquid octanoic acid. A region displaying one-dimensional lamellar structure is located in the center of the phase diagram. A region along the soap-water axis has a two-dimensional normal hexagonal structure. Another region at high octanoic acid content has a reversed hexagonal structure. Along the soap-fatty acid axis the acid-soap 2NaC8:1HC8 in crystalline state is found.X-ray and density findings for the various phases are presented, and structural parameters for the different liquid crystalline phases are estimated.The phase behavior of the potassium soap system is similar to that of the sodium system.The isothermal ternary phase diagram of a soap, the corresponding fatty acid and water provides information about the ionization state of the system, from the unionized fatty acid to the fully ionized soap.  相似文献   

7.
The temperature-versus-composition phase diagrams of eight different 1-alkylpyridinium octane-1-sulfonates (APOSs) in water were studied by 1H NMR, 2H NMR, pulsed gradient spin-echo NMR, small-angle X-ray diffraction, differential scanning calorimetry, surface tension and conductivity measurements, and polarizing microscopy. The number of carbons (n(c)) in the hydrocarbon chain of the pyridinium counterions was varied from n(c) = 1 to n(c) = 8 to study how the phase behavior of the APOS/2H2O systems was affected by a change in the chain length of the counterion. The sodium octane-1-sulfonate (NaOS)/water system was used as a reference. This system formed an isotropic micellar solution (L1) phase and a normal hexagonal (H(I)) phase. All APOSs were readily soluble in water and formed L1 phases. The surface tension above the critical micelle concentration for n(c) between 1 and 3 was higher than that for NaOS, and it decreased steadily for the different APOSs with increasing chain length. The area per molecule at the air/solution interfaces was rather constant at 68 A2 for n(c) between 1 and 7. For 1-octylpyridinium octane-1-sulfonate (OPOS), it was about 5 A2 smaller, which was just outside the estimated error. However, the smallest area was obtained for NaOS. At higher surfactant concentrations, liquid crystalline phases formed. Both cubic and H(I) phases were found for n(c) = 1 and 2, while for n(c) between 3 and 5 only an H(I) phase was observed. H(I) and lamellar liquid crystalline (Lalpha) phases formed for n(c) = 6 and 7. The only liquid crystalline phase found in the OPOS system was a Lalpha phase. The NaOS H(I) phase was the only liquid crystalline phase that showed a linear relation between the 2H2O NMR quadrupolar splitting (deltaW) and Xsurf/X(W), where Xsurf and X(W) are the mole fractions of surfactant and water. The OPOS lamellae were found to be much thinner than expected, indicating a defect lamellar structure. This was further supported by the behavior of the quadrupolar splitting ofdeuterated OPOS. The anomalous behaviors of the 2H2O NMR quadrupolar splitting observed in the Lalpha phases of 1-heptylpyridinium octane-1-sulfonate and OPOS were interpreted in terms of changes in the population of the water molecules residing in different sites combined with a continuous rearrangement of the lamellae surface with the possible development of holes. The appearances of the phase diagrams were discussed in terms of surfactant molecular geometry and the packing of the amphiphiles in the aggregates formed.  相似文献   

8.
Phase diagrams for cuprates of alkaline earth and rare earth elements are presented, covering binary to quintenary oxides and including selected solid solution series with other elements. Elementary crystal chemical data are included for identification of the occurring phases. Chemical stability is discussed with respect to the high-temperature reactions with Lewis acids like CO2, protons, etc. Particularly the occurrence of oxide carbonates is consistently pointed out as one of the possible reasons for contradictory results in phase diagrams which comprise oxides with high basicity.  相似文献   

9.
The isothermal ternary phase diagrams for the systems magnesium dodecylsulphate-decanol-water at 40 °C and calcium dodecylsulphate-decanol-water at 50 °C are determined by water deuteron NMR and polarizing microscopic studies. In the magnesium system, three liquid crystalline phases (lamellar and normal and reverse hexagonal) and two isotropic (normal and reverse) solution phases are characterized and their ranges of existence are obtained. The calcium system yields the same liquid crystalline phases, but only the lamellar liquid crystalline phase is investigated in detail. The important observations made are: (i) The lamellar liquid crystalline phase for the magnesium and calcium systems can incorporate, respectively, a maximum of 22.5 and 14.3 mole water per mole surfactant ion against 139 mole water for the corresponding sodium system. (ii) The reverse hexagonal liquid crystalline phase is formed for both the magnesium and calcium systems while no such liquid crystalline phase exists for the corresponding sodium system. (iii) The2H NMR quadrupole splittings obtained in the liquid crystalline phases for C8SO 4 and C12SO 4 surfactant systems with different counterions (Ca2+,Mg2+,Be2+,Na+) reveal that surfactant hydration is almost independent of alkyl chain length and counterions.  相似文献   

10.
The phase behavior of amphiphiles, e.g., lipids and surfactants, at low water content is of great interest for many technical and pharmaceutical applications. When put in contact with air having a moderate relative humidity, amphiphiles often exhibit coexistence between solid and liquid crystalline phases, making their complete characterization difficult. This study describes a (13)C solid-state NMR technique for the investigation of amphiphile phase behavior in the water-poor regime. While the (13)C chemical shift is an indicator of molecular conformation, the (13)C signal intensities obtained with the CP and INEPT polarization transfer schemes yield information on molecular dynamics. A theoretical analysis incorporating the effect of molecular segment reorientation, with the correlation time τ(c) and order parameter S, shows that INEPT is most efficient for mobile segments with τ(c) < 0.01 μs and S < 0.05, while CP yields maximal signal for rigid segments with τ(c) > 10 μs and/or S > 0.5 under typical solid-state NMR experimental conditions. For liquid crystalline phases, where τ(c) < 0.01 μs and 0 < S < 0.3, the observed CP and INEPT intensities serve as a gauge of S. The combination of information on molecular conformation and dynamics permits facile phase diagram determination for systems with solid crystalline, solid amorphous, anisotropic liquid crystalline, and isotropic liquid (crystalline) phases as demonstrated by experiments on a series of reference systems with known phase structure. Three solid phases (anhydrous crystal, dihydrate, gel), two anisotropic liquid crystalline phases (normal hexagonal, lamellar), and two isotropic liquid crystalline phases (micellar cubic, bicontinuous cubic) are identified in the temperature-composition phase diagram of the cetyltrimethylammonium succinate/water system. Replacing the succinate counterion with DNA prevents the formation of phases other than hexagonal and leads to a general increase of τ(c).  相似文献   

11.
The solid–liquid phase equilibria for the ternary system 2-methyl-4-nitroaniline + 2-methyl-6-nitroaniline + ethyl acetate was determined experimentally by the method of isothermal solution saturation at temperatures of (293.15, 303.15 and 313.15) K under the pressure of 101.2 kPa. Based on the obtained solubility data, the isothermal phase diagrams of the system were constructed. At each temperature, there are two pure solid phases formed, which correspond to pure 2-methyl-4-nitroaniline and pure 2-methyl-6-nitroaniline, which was confirmed by Schreinemakers’ wet residue method and X-ray powder diffraction. The crystallization regions of pure 2-methyl-4-nitroaniline and pure 2-methyl-6-nitroaniline increased with decreasing temperature. The crystalline region of 2-methyl-4-nitroaniline was larger than that of 2-methyl-6-nitroaniline at a fixed temperature. The solubility data were correlated with the NRTL and Wilson models. The values of the root-mean-square deviations are 5.01 × 10?3 for the NRTL model, and 6.43 × 10?3 for the Wilson model. The solid–liquid equilibria, phase diagrams and the thermodynamic models for the ternary system can provide the foundation for separating 2-methyl-6-nitroaniline or 2-methyl-4-nitroaniline from its mixtures.  相似文献   

12.
Extensions of the solution phases have been determined and the self-diffusion behaviour investigated in ternary systems containing water/xylene/primary alkyl amine, where the chain length of the amine varied between C6 and C10. The phase diagrams at 25°C are dominated by a solution phase and a rather large water/xylene miscibility gap which increases slightly in size with increasing chain length of the amine. A lamellar liquid crystalline phase was found in all binary amine/water systems at 25°C, except for hexylamine where the lamellar phase melts below this temperature. The self-diffusion coefficients of all components decrease in a similar way when water is added to a xylene/amine solution. The self-diffusion is rapid and of similar magnitude for all components, which shows that no well-defined inverse aggregates are formed. The data are discussed in terms of hydrogen bonding between the different species in the solution.  相似文献   

13.
The state of water and several transitions were examined in the systemsn-decanephosphonic acid (DPA)—water and the sodium salts of DPA—water. Temperature — composition phase diagrams are reported. The results show that several liquid crystalline phases plus isotropic liquid, and two solid phases (a waxy solid phase and a crystalline phase) are formed. Several types of water were detected: bulk-like water, interfacial water and hydration water. This work was supported by the Consejo Nacional de Ciencia y Technología de México (grant # 3319-E) and by the Consejo Nacional de Investigaciones Científicas y Técnicas de la República de Argentina.  相似文献   

14.
The dependence of alcohol chain length on the isothermal phase behavior of the ternary systems hexadecylrrimethylammonium bromide/alcohol/water has been investigated. A liquid crystalline phase (the normal hexagonal one) occurs in the phase diagrams along the surfactant/water axis and this phase extends in the interior of the diagrams.When the alcohol is methanol, ethanol or butanol, there is in the ternary phase diagram a continuous solution region from the water to the alcoholic corner, and in the butanol case, in addition, a small region of lamellar liquid crystalline phase in the interior of the diagram. When the alcohol chain length is increased, the continuous solution region is divided into two subregions, an aqueousL 1 and an alcoholicL 2. The lamellar phase occupies the center of the phase diagrams and has the capability to incorporate large amounts of water under one-dimensional swelling. On the alcoholic side of the lamellar phase occur a reversed hexagonal liquid crystalline phase and a cubic liquid crystalline phase in the octanolic system; in the decanolic system the cubic phase is missing, but instead another liquid crystalline phase, presumably with rod-structure, occurs in addition to the reversed hexagonal phase.In a decanolic system where the monovalent bromide ion is replaced by the divalent sulphate ion there are the same solution regionsL 1 andL 2, and phase regions with liquid crystalline normal hexagonal and lamellar structures. The lamellar phase has lost much of its capability of incorporating water. That is in analogy with the conditions in anionic systems where the counterion charge has been increased. There is no reversed hexagonal phase, but on the alcoholic side of the lamellar phase, there is the same foreign liquid crystalline phase with a presumed rod-structure as in the monovalent system.  相似文献   

15.
吴进明  曾英 《物理化学学报》2007,23(9):1411-1414
运用浓度比较法, 对25 ℃时V-H2O体系进行热力学分析和电化学分析, 编程计算出各溶解组分浓度, 以及固相和液相、各固相间边界线, 确定固相区和液相区的位置. 在此基础上, 绘制出了总V浓度cT(V)=1.0×10-5 mol·L-1时V-H2O体系的溶解组分优势区域图和电势-pH图以及cT(V)=1.0×10-7 mol·L-1时V-H2O体系的电势-pH图. 电势-pH图结果表明在一定温度和压力下, 各相稳定区取决于体系中溶液态物质的总浓度. 随cT(V)的减小, 溶液稳定区增大, 各固相稳定区均不同程度减小.  相似文献   

16.
It is shown for a model system consisting of spherical particles confined in cylindrical pores that the first ten close-packed phases are in one-to-one correspondence with the first ten ways of folding a triangular lattice, each being characterized by a roll-up vector like the single-walled carbon nanotube. Phase diagrams in pressure-diameter and temperature-diameter planes are obtained by inherent-structure calculation and molecular dynamics simulation. The phase boundaries dividing two adjacent phases are infinitely sharp in the low-temperature limit but are blurred as temperature is increased. Existence of such phase boundaries explains rich, diameter-sensitive phase behavior unique for cylindrically confined systems.  相似文献   

17.
Thermochemical and thermodynamical properties of HTSC phases are reviewed for the Y-Ba-Cu-O system and also presented for the newly calculated Bi-Sr-Cu-O system stressing out stoichiometric and phenomenological viewpoints. Simulated data are listed for (H 298 o -H o o , phase transformation temperatures, standard entropies, standard enthalpies of formation, heat capacities in crystalline phase, etc. Pseudobinary phase diagrams are treated showing the effect of oxygen partial pressure particularly illustrated on the (Sr, Bi, Ba)-Cu-O system.The work was carried out under the project No. A 2010532 supported by the Grant Agency of Academy of Sciences of the Czech Republic and the grant No. 104/97/0589 financed by the Grant Agency of the Czech Republic.  相似文献   

18.
A self-consistent theory has been developed for determination of phase diagrams of a crystalline polymer solution. Although the original Flory diluent theory captures the liquidus line, the theory is incapable of accounting for the solidus line due to the inherent assumption of complete immiscibility of solvent in the solid crystal. The present theory considers all possible interactions involving amorphous-amorphous and crystal-amorphous interactions. The self-consistent solutions predict various phase diagrams involving liquid-liquid, pure solid, and liquid-solid coexistence regions bound by liquidus and solidus lines. In the limit of complete insolubility of solvent in neat solid crystal, the original Flory diluent theory is recovered.  相似文献   

19.
Dimethyldodecylamine-N-oxide (DDAO) has only one polar atom that is able to interact with water. Still, this surfactant shows very hydrophilic properties: in mixtures with water, it forms normal liquid crystalline phases and micelles. Moreover, there is data in the literature indicating that the hydration of this surfactant is driven by enthalpy while other studies show that hydration of surfactants and lipids typically is driven by entropy. Sorption calorimetry allows resolving enthalpic and entropic contributions to the free energy of hydration at constant temperature and thus directly determines the driving forces of hydration. The results of the present sorption calorimetric study show that the hydration of liquid crystalline phases of DDAO is driven by entropy, except for the hydration of the liquid crystalline lamellar phase which is co-driven by enthalpy. The exothermic heat effect of the hydration of the lamellar phase arises from formation of strong hydrogen bonds between DDAO and water. Another issue is the driving forces of the phase transitions caused by the hydration. The sorption calorimetric results show that the transitions from the lamellar to cubic and from the cubic to the hexagonal phase are driven by enthalpy. Transitions from solid phases to the liquid crystalline lamellar phase are entropically driven, while the formation of the monohydrate from the dry surfactant is driven by enthalpy. The driving forces of the transition from the hexagonal phase to the isotropic solution are close to zero. These sorption calorimetric results are in good agreement with the analysis of the binary phase diagram based on the van der Waals differential equation. The phase diagram of the DDAO-water system determined using DSC and sorption calorimetry is presented.  相似文献   

20.
Isothermal-isobaric ensemble Monte Carlo simulation of adamantane has been carried out with a variable shape simulation cell. The low-temperature crystalline phase and the room-temperature plastic crystalline phases have been studied employing the modified Williams potential. We show that at room temperature, the plastic crystalline phase transforms to the crystalline phase on increase in pressure. Further, we show that this is the same phase as the low-temperature ordered tetragonal phase of adamantane. The high-pressure ordered phase appears to be characterized by a slightly larger shift of the first peak toward a lower value of r in C-C, C-H, and H-H radial distribution functions as compared to the low-temperature tetragonal phase. The coexistence curve between the crystalline and plastic crystalline phase has been obtained approximately up to a pressure of 4 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号