首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biocompatibility of titanium implants in bone depends on the response shown by cells in contact with the implant surface. Several developments have been targeted at achieving successful implant treatment. The aim of this study was to develop a novel preparation procedure to evaluate the bone cell response produced at the bone–implant interface using the technique scanning electron microscopy with backscattered electron imaging (SEM-BSE). Dental prostheses with an SLA-modified or TOP-modified surface were implanted in a toothless part of the mandibula in female pigs. The animals were sacrificed 12 weeks after surgery, at which time block specimens containing the implants were obtained. These specimens were then processed for SEM-BSE by optimizing a protocol involving chemical fixation and heavy metal staining. In addition, element distribution maps for the implant–bone tissue interface were obtained using a microanalytical system based on energy-dispersive X-ray spectrometry (EDS). This novel visualisation approach enabled a comprehensive study of the extracellular matrix and cell components of the host tissues neoformed around the implant. SEM-BSE images also provided ultrastructural details of the bone cells. This technique appears to be an effective and very promising tool for detailed studies on the implant–bone tissue interface and the host response to the bone incorporation process.  相似文献   

2.
Kamanyi A  Ngwa W  Betz T  Wannemacher R  Grill W 《Ultrasonics》2006,44(Z1):e1295-e1300
Combined phase-sensitive acoustic microscopy (PSAM) at 1.2 GHz and confocal laser scanning microscopy (CLSM) in reflection and fluorescence has been implemented and applied to polymer blend films and fluorescently labeled fibroblasts and neuronal cells in order to explore the prospects and the various contrast mechanisms of this powerful technique. Topographic contrast is available for appropriate samples from CLSM in reflection and, with significantly higher precision, from the acoustic phase images. Material contrast can be gained from acoustic amplitude V(z) graphs. In the case of the biological cells investigated, the optical and acoustic images are very different and exhibit different features of the samples.  相似文献   

3.
Bordered pits are structures in the cell walls of softwood tracheids which permit the movement of water between adjacent cells. These structures contain a central pit membrane composed of an outer porous ring (margo) and an inner dense and pectin-rich disc (torus). The membrane is overarched on each side by pit borders. Pits may be aspirated, a condition where the torus seals against the pit border, effectively blocking the pathway between cells. In living trees this maintains overall continuity of water conduction in xylem by sealing off tracheids containing air. Drying of timber results in further pit aspiration, which reduces wood permeability to liquid treatment agents such as antifungal chemicals. One possible way to increase permeability is by treating wood with pectin lyase to modify or remove the torus. The effectiveness of this treatment was initially evaluated using light microscopy (LM) of toluidine blue stained wood. Pectic material is coloured pink-magenta with this stain, and loss of this colour after treatment has been interpreted as indicating destruction of the torus. However, correlative light (LM) and scanning electron (SEM) microscopic observations of identical areas of toluidine blue stained sections revealed that many unstained pits had intact but modified tori when viewed with SEM. These observations indicate that LM alone is not sufficient to evaluate the effects of pectin lyase on pit membranes in wood. Combining LM and SEM gives more complete information.  相似文献   

4.
Implant healing was studied with regard to the mineralization of the implant-tissue interface. Titanium discs were surface-modified and implanted in rat tibia for 4 weeks. After implantation, the bone was embedded in resin and cross sections of bone and implant were made using a low speed saw equipped with a diamond wafering blade. The sections were analyzed with imaging TOF-SIMS using a Bi3+ cluster ion source. This ion source has recently been shown to enable identification of hydroxyapatite (HA) fragments in bone samples. The area within 40 μm from the implant surface was selected for analysis, corresponding to bone-implant interface, from which positive spectra were recorded. In conclusion, differences were observed between the implants tested regarding signal intensity of fragments specific for HA. Coating of the implants with magnesium and porosity were shown to influence the mineral content of the bone-implant interface. This technique might be useful for biocompatibility assessment and for studying the mineralization process at implant surfaces.  相似文献   

5.
The dual beam scanning electron microscope, equipped with both a focused ion- and scanning electron-beam (FIB SEM) is a novel tool for the exploration of the subsurface structure of biological tissues. The FIB can remove a predetermined amount of material from a selected site to allow for subsurface exploration and when coupled with SEM or scanning ion-beam microscopy (SIM) could be suitable to examine the subsurface structure of bacterial biofilms on the leaf surface. The suitability of chemical and cryofixation was examined for use with the FIB SEM to examine bacterial biofilms on leaf surfaces. The biological control agent, Burkholderia pyroccinia FP62, that rapidly colonizes the leaf surface and forms biofilms, was inoculated onto geranium leaves and incubated in a greenhouse for 7 or 14 days. Cryofixation was not suitable for examination of leaf biofilms because it created a frozen layer over the leaf surface that cracked when exposed to the electron beam and the protective cap required for FIB milling could not be accurately deposited. With chemically fixed samples, it was possible to precisely FIB mill a single cross section (5μm) or sequential cross sections from a single site without any damage to the surrounding surface. Biofilms, 7 days post-inoculation (DPI), were composed of 2-5 bacterial cell layers while biofilms 14 DPI ranged from 5 to greater than 30 cell layers. Empty spaces between bacteria cells in the subsurface structure were observed in biofilms 7- and 14-DPI. Sequential cross sections inferred that the empty spaces were often continuous between FP62 cells and could possibly make up a network of channels throughout the biofilm. FIB SEM was a useful tool to observe the subsurface composition of a foliar biofilm.  相似文献   

6.
Lei M  Zumbusch A 《Optics letters》2010,35(23):4057-4059
A scheme based on a W-shaped axicon mirror device for total-internal-reflection fluorescence microscopy (TIRFM) is presented. This approach combines the advantages of higher efficiency compared with traditional TIRFM, adjustable illumination area, and simple switching between wide-field and TIRF imaging modes. TIRF images obtained with this approach are free of shadow artifacts and of interference fringes. Example micrographs of fluorescently labeled polystyrene beads, of Convallaria majalis tissue, and of Propidium-iodide-labeled Chinese hamster ovary cells are shown, and the capabilities of the scheme are discussed.  相似文献   

7.
Since transition metal oxides are wide bandgap, low conductivity materials compared to conventional semiconductors, surface analysis by scanning tunneling microscopy (STM) is expected to be problematic. This paper considers the factors that affect atomic scale imaging of transition metal oxides and demonstrates how STM can be exploited to examine the geometric and electronic structures of SrTiO3 and TiO2 surfaces, their variations with thermochemical history, and the mechanisms of metal/oxide interface formation. The development of periodic atomic scale surface structure with variations in surface compositions are documented for both oxides. Further, the interactions of these surfaces with metal are examined by characterizing the morphologies that develop upon deposition of Cu on SrTiO3 and Al on TiO2.  相似文献   

8.
We describe a near-field optical microscopy technique based on the interaction of a probe molecule with the sample surface (e.g., with a flat metal surface) in the field of external optical radiation and consider the spontaneous Raman scattering characterized, in the presence of a metal surface, by the effective polarizability of the probe molecule, depending on the frequency and the distance to the sample surface. At certain distances from the probe molecule to the surface, the effective polarizability of this molecule (determined with allowance for the polarizing influence of the surface of a semi-infinite medium) at the Stokes frequency sharply increases in comparison to the quantum polarizability of an isolated molecule, which is indicative of the formation of optical near-field resonances. It is shown that the proposed method of near-field optical microscopy is characterized by high sensitivity and high spatial resolution (on the order of 1 Å).  相似文献   

9.
Recent studies of thermal roughening on Si surfaces and kinetic roughening of some growing films, copper and tungsten, by using scanning tunneling microscopy and atomic force microscopy are reviewed. A logarithmic divergence of the surface height fluctuations of Si(111) vicinal surfaces is confirmed, in agreement with the theoretical prediction of rough surface in thermal equilibrium. For the kinetically formed rough surfaces, power law dependences of the interface width on the system size are clearly observed. Furthermore, the tungsten films show a short-range scaling regime and a long-range “smooth” regime. The roughness exponents α are compared with theoretical predictions: for the typical Cu electrode position condition (α=1/2), the exponent appears to be close to that found for local growth models, and for tungsten films (0.7~0.8), it is consistent with recent predictions for growth where surface diffusion is predominant.  相似文献   

10.
Microangiography and vascular casting have previously been used to demonstrate the three-dimensional architecture of human uterine microvasculature. However, a limitation of these perfusion-dependent techniques is the difficulty in identifying surrounding tissue components. We have previously shown that it is possible to visualise microvascular networks on the cut surfaces of fresh tissue specimens by diffusive labelling of vascular endothelium with fluorescently conjugated UEA-1 lectin. Unlike perfusion methods that are limited to accessible vascular networks, diffusive fluorescence labelling (DFL) allows additional visualisation of extravascular cellular components, such as smooth muscle. Following UEA-1 DFL, smooth muscle-myosin and -actin were then visualised by immunolocalisation on the acetone-fixed tissue pieces. This allowed clear three-dimensional distinction between the vascular and muscle architecture of the myometrium and endometrium. This method can also be applied for studying the relative distribution of microvascular and muscle architecture in leiomyomas (fibroids). The techniques described in this methodological study provide a simple way of directly examining the uterine vasculature in three dimensions using conventional microscopy, while also distinguishing myometrial from endometrial parts of the network.  相似文献   

11.
In this work, a method based on scanning Kelvin probe microscopy is proposed to separately extract source/drain(S/D) series resistance in operating amorphous indium–gallium–zinc–oxide(a-IGZO) thin-film transistors. The asymmetry behavior of S/D contact resistance is deduced and the underlying physics is discussed. The present results suggest that the asymmetry of S/D contact resistance is caused by the difference in bias conditions of the Schottky-like junction at the contact interface induced by the parasitic reaction between contact metal and a-IGZO. The overall contact resistance should be determined by both the bulk channel resistance of the contact region and the interface properties of the metalsemiconductor junction.  相似文献   

12.
13.
The present study was designed to show the applicability of scanning ion conductance microscopy (SICM) for imaging different types of biological samples. For this purpose, we first applied SICM to image collagen fibrils and showed the usefulness of the approach-retract scanning (ARS)/hopping mode for such samples with steep slopes. Comparison of SICM images with those obtained by AFM revealed that the ARS/hopping SICM mode can probe the surface topography of collagen fibrils and chromosomes at nanoscale resolution under liquid conditions. In addition, we successfully imaged cultured HeLa cells, with 15 μm in height by ARS/hopping SICM mode. Because SICM can obtain non-contact (or force-free) images, delicate cellular projections were visualized on the surface of the fixed cell. SICM imaging of live HeLa cells further demonstrated its applicability to study the morphological dynamics associated with biological processes on the time scale of minutes under liquid conditions. We further applied SICM for imaging the luminal surface of the trachea and succeeded in visualizing the surface of both ciliated and non-ciliated cells. These SICM images were comparable with those obtained by scanning electron microscopy. Although the dynamic mode of AFM provides better resolution than the ARS/hopping mode of SICM in some samples, only the latter can obtain contact-free images of samples with steep slopes, rendering it an important tool for observing live cells as well as unfixed or fixed soft samples with complicated shapes. Taken together, we demonstrate that SICM imaging, especially using an ARS/hopping mode, is a useful technique with unique capabilities for imaging the three-dimensional topography of a range of biological samples under physiologically relevant aqueous conditions.  相似文献   

14.
One method to increase the clinical success rate of metal implants is to increase their bone bonding properties, i.e. to develop a bone bioactive surface leading to reduced risks of interfacial problems. Much research has been devoted to modifying the surface of metals to make them become bioactive. Many of the proposed methods include depositing a coating on the implant. However, there is a risk of coating failure due to low substrate adhesion. This paper describes a method to obtain bioactivity combined with a high coating adhesion via a gradient structure of the coating. Gradient coatings were deposited on Ti (grade 5) using reactive magnetron sputtering with increasing oxygen content. To increase the grain size in the coating, all coatings were post annealed at 385 °C. The obtained coating exhibited a gradual transition over 70 nm from crystalline titanium oxide (anatase) at the surface to metallic Ti in the substrate, as shown using cross-section transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling. Using scratch testing, it could be shown that the adhesion to the substrate was well above 1 GPa. The bioactivity of the coating was verified in vitro by the spontaneous formation of hydroxylapatite upon storage in phosphate buffer solution at 37 °C for one week.The described process can be applied to implants irrespective of bulk metal in the base and should introduce the possibility to create safer permanent implants like reconstructive devices, dental, or spinal implants.  相似文献   

15.
Confocal scanning laser microscopy (CSLM) constitutes an optical, noninvasive method providing visualization of tissue architecture with resolution similar to that of light microscopy. In dermatology, confocal imaging enables in vivo measurements of surface and subsurface skin microstructures. Skin annexes, as well as cutaneous cells from different epidermal layers, can be easily distinguished; their change in morphology from skin surface to the papillary dermis can be observed. Therefore, CSLM possesses a high potential for diagnostical purposes and dermatological research. The aspect of normal skin in contrast to the pathogenic state can be exposed. In our studies, we used in vivo fluorescence CSLM for morphometric analysis of healthy human skin and for imaging a number of clinically relevant inflammatory, proliferative, and neoplastic skin disorders. We report the ability to produce high-resolution histoimages of normal and pathological epidermis using this nondestructive visualization technique. Changes in keratinocyte size, shape, and morphology, as well as changes in the distribution pattern of the fluorescent emission of the dye, can be detected. Furthermore, novel fiber optic elements support a flexible handling of the rigid microscopic gadgetry. Four clinical examples of implementation were elected and instanced for demonstration.  相似文献   

16.
Surface processing of a Ti-6Al-4V alloy led to a complex multilayered microstructure containing several phases of the Ni-Ti-P-Al-O system, which improves the mechanical and tribological surface properties. The microstructure, chemical and phase compositions of the hard layer formed on the surface were investigated by LM, XRD, SEM as well as analytical/high-resolution TEM, STEM, EDS, electron diffraction and FIB. Phase identification based on electron diffraction, HRTEM and EDS microanalysis revealed the presence of several binary and ternary phases in the system Ti-Ni-P, sometimes with partial substitution of Ti by Al. However some phases, mainly nanoparticles, still remain not identified satisfactorily. Electron microscopy techniques used for identification of phases present in surface multilayers and some practical limits to their routine application are reminded here.  相似文献   

17.
Long-term clinical success of endosseous dental implants is critically related to a wide bone-to-implant direct contact. This condition is called osseointegration and is achieved ensuring a mechanical primary stability to the implant immediately after implantation. Both primary stability and osseointegration are favoured by micro-rough implant surfaces which are obtained by different techniques from titanium implants or coating the titanium with different materials. Host bone drilled cavity is comparable to a common bone wound. In the early bone response to the implant, the first tissue which comes into contact with the implant surface is the blood clot, with particular attention to platelets and fibrin. Peri-implant tissue healing starts with an inflammatory response as the implant is inserted in the bone cavity, but an early afibrillar calcified layer comparable to the lamina limitans or incremental lines in bone is just observable at the implant surface both in vitro than in vivo conditions. Just within the first day from implantation, mesenchymal cells, pre-osteoblasts and osteoblasts adhere to the implant surface covered by the afibrillar calcified layer to produce collagen fibrils of osteoid tissue. Within few days from implantation a woven bone and then a reparative trabecular bone with bone trabeculae delimiting large marrow spaces rich in blood vessels and mesenchymal cells are present at the gap between the implant and the host bone. The peri-implant osteogenesis can proceed from the host bone to the implant surface (distant osteogenesis) and from the implant surface to the host bone (contact osteogenesis) in the so called de novo bone formation. This early bone response to the implant gradually develops into a biological fixation of the device and consists in an early deposition of a newly formed reparative bone just in direct contact with the implant surface. Nowadays, senile and post-menopausal osteoporosis are extremely diffuse in the population and have important consequences on the clinical success of endosseous dental implants. In particular the systemic methabolic and site morphological conditions are not favorable to primary stability, biological fixation and final osseointegration.

An early good biological fixation may allow the shortening of time before loading the implant, favouring the clinical procedure of early or immediate implant loading. Trabecular bone in implant biological fixation is gradually substituted by a mature lamellar bone which characterizes the implant ossoeintegration. As a final consideration, the mature lamellar bone observed in osseointegrated implants is not always the same as a biological turnover occurs in the peri-implant bone up to 1 mm from the implant surface, with both osteogenesis and bone reabsorption processes.  相似文献   


18.
Scanning electron microscopy (SEM) is shown to be capable of imaging a monolayer of graphene, and is employed to observe in situ the graphene growth process by segregation of bulk-dissolved carbon on a polycrystalline nickel surface. Because of a wide field of view, SEM could easily track the rapid graphene growth induced by carbon segregation. Monolayer graphene extended on (111)- and (011)-oriented nickel grains, but was excluded from the (001) grains. This is due to the difference in carbon-nickel binding energy among these crystalline faces. This work proves the usefulness of in situ SEM imaging for the investigation of large area graphene growth.  相似文献   

19.
The structure of lithium niobate single crystals is studied by a complex technique that combines scanning electron microscopy and atomic force microscopy. By implementing the piezoresponse force method on an atomic force microscope, the domain structure of lithium niobate crystals, which was not revealed without electron beam irradiation, is visualized  相似文献   

20.
We investigate conductance through contacts created by pressing a hard tip, as used in scanning tunneling microscopy, against substrates. Two different substrates are considered, one a normal metal (Cu) and another a semi-metal (graphite). Our study involves the molecular dynamics simulations for the atomic structure during the growth of the contact, and selfconsistent field electronic structure calculations of deformed bodies. We develop a theory predicting the conductance variations as the tip approaches the surface. We offer an explanation for a quasiperiodic variation of conductance of the contact on the graphite surface, a behavior which is dramatically different from contacts on normal metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号