首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel β-glucosidase gene, bgl1G5, was cloned from Phialophora sp. G5 and successfully expressed in Pichia pastoris. Sequence analysis indicated that the gene consists of a 1,431-bp open reading frame encoding a protein of 476 amino acids. The deduced amino acid sequence of bgl1G5 showed a high identity of 85 % with a characterized β-glucosidase from Humicola grisea of glycoside hydrolase family 1. Compared with other fungal counterparts, Bgl1G5 showed similar optimal activity at pH 6.0 and 50 °C and was stable at pH 5.0–9.0. Moreover, Bgl1G5 exhibited good thermostability at 50 °C (6 h half-life) and higher specific activity (54.9 U mg–1). The K m and V max values towards p-nitrophenyl β-d-glucopyranoside (pNPG) were 0.33 mM and 103.1 μmol?min–1?mg–1, respectively. The substrate specificity assay showed that Bgl1G5 was highly active against pNPG, weak on p-nitrophenyl β-d-cellobioside (pNPC) and p-nitrophenyl-β-d-galactopyranoside (ONPG), and had no activity on cellobiose. This result indicated Bgl1G5 was a typical aryl β-glucosidase.  相似文献   

2.
β-d-Xylosidase/α-l-arabinofuranosidase from Selenomonas ruminantium is the most active enzyme known for catalyzing hydrolysis of 1,4-β-d-xylooligosaccharides to d-xylose. Temperature dependence for hydrolysis of 4-nitrophenyl-β-d-xylopyranoside (4NPX), 4-nitrophenyl-α-l-arabinofuranoside (4NPA), and 1,4-β-d-xylobiose (X2) was determined on and off (k non) the enzyme at pH 5.3, which lies in the pH-independent region for k cat and k non. Rate enhancements (k cat/k non) for 4NPX, 4NPA, and X2 are 4.3?×?1011, 2.4?×?109, and 3.7?×?1012, respectively, at 25 °C and increase with decreasing temperature. Relative parameters k cat 4NPX/k cat 4NPA, k cat 4NPX/k cat X2, and (k cat/K m)4NPX/(k cat/K m)X2 increase and (k cat/K m)4NPX/(k cat/K m)4NPA, (1/K m)4NPX/(1/K m)4NPA, and (1/K m)4NPX/(1/K m)X2 decrease with increasing temperature.  相似文献   

3.
Treatment of the natural tri-, tetra-, and pentasaccharides, β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-d-Glcp, α-l-Fucp-(1→2)-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-d-Glcp, and α-l-Fucp-(1→2)-[α-d-GalNAcp-(1→3)]-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-d-Glcp, which are glucose analogs of Lex, with ammonium carbamate in aqueous methanol gave the corresponding β-glycopyranosyl amines. After their N-acylation with N-Z-glycine N-hydroxysuccinimidyl ester (Z is benzyloxycarbonyl) with subsequent hydrogenolytic removal of Z-group, corresponding N-glycyl-β-glycopyranosyl amines were obtained in yields up to 70%.  相似文献   

4.
β-Aminopeptidases exhibit both hydrolytic and aminolytic (peptide bond formation) activities and have only been reported in bacteria. We identified a gene encoding the β-aminopeptidase homolog from a genome database of the filamentous fungus Aspergillus oryzae. The gene was overexpressed in A. oryzae, and the resulting recombinant enzyme was purified. Apart from bacterial homologs [β-Ala-para-nitroanilide (pNA)], the enzyme preferred d-Leu-pNA and d-Phe-pNA as substrates. Therefore, we designated this gene as d-stereoselective aminopeptidase A (damA). The purified recombinant DamA was estimated to be a hexamer and was composed of two subunits with molecular masses of 29.5 and 11.5 kDa, respectively. Optimal hydrolytic activity of DamA toward d-Leu-pNA was observed at 50 °C and pH 8.0. The enzyme was stable up to 60 °C and from pH 4.0–11.0. DamA also exhibited aminolytic activity, producing d-Leu-d-Leu-NH2 from d-Leu-NH2 as a substrate. In the presence of 3.0 M NaCl, the amount of pNA liberated from d-Leu-pNA by DamA was 3.1-fold higher than that in the absence of NaCl. Thus, DamA is a halophilic enzyme. The enzyme was utilized to synthesize several hetero-dipeptides containing a d-amino acid at the N-terminus as well as physiologically active peptides.  相似文献   

5.
The gene encoding a thermostable β-d-xylosidase (GbtXyl43B) from Geobacillus thermoleovorans IT-08 was cloned in pET30a and expressed in Escherichia coli; additionally, characterization and kinetic analysis of GbtXyl43B were carried out. The gene product was purified to apparent homogeneity showing M r of 72 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme exhibited an optimum temperature and pH of 60 °C and 6.0, respectively. In terms of stability, GbtXyl43B was stable at 60 °C at pH 6.0 for 1 h as well as at pH 6–8 at 4 °C for 24 h. The enzyme had a catalytic efficiency (k cat/K M) of 0.0048?±?0.0010 s?1 mM?1 on p-nitrophenyl-β-d-xylopyranoside substrate. Thin layer chromatography product analysis indicated that GbtXyl43B was exoglycosidase cleaving single xylose units from the nonreducing end of xylan. The activity of GbtXyl43B on insoluble xylan was eightfold higher than on soluble xylan. Bioinformatics analysis showed that GbtXyl43B belonging to glycoside hydrolase family 43 contained carbohydrate-binding module (CBM; residues 15 to 149 forming eight antiparallel β-strands) and catalytic module (residues 157 to 604 forming five-bladed β-propeller fold with predicted catalytic residues to be Asp287 and Glu476). CBM of GbtXyl43B dominated by the Phe residues which grip the carbohydrate is proposed as a novel CBM36 subfamily.  相似文献   

6.
β-d-Xylosidase/α-l-arabinofuranosidase from Selenomonas ruminantium is the most active enzyme known for catalyzing hydrolysis of 1,4-β-d-xylooligosaccharides to d-xylose. Catalysis and inhibitor binding by the GH43 β-xylosidase are governed by the protonation states of catalytic base (D14, pK a 5.0) and catalytic acid (E186, pK a 7.2). Biphasic inhibition by triethanolamine of E186A preparations reveals minor contamination by wild-type-like enzyme, the contaminant likely originating from translational misreading. Titration of E186A preparations with triethanolamine allows resolution of binding and kinetic parameters of the E186A mutant from those of the contaminant. The E186A mutation abolishes the pK a assigned to E186; mutant enzyme binds only the neutral aminoalcohol $ \left( {{\text{pH}} - {\text{independent}}\;K_{\text{i}}^{\text{triethanolamine}} = 19\,{\text{mM}}} \right) $ , whereas wild-type enzyme binds only the cationic aminoalcohol $ \left( {{\text{pH}} - {\text{independent}}\;K_{\text{i}}^{\text{triethanolamine}} = 0.065\,{\text{mM}}} \right) $ . At pH 7.0 and 25°C, relative kinetic parameter, $ k_{\text{cat}}^{\text{4NPX}}/k_{\text{cat}}^{\text{4NPA}} $ , for substrates 4-nitrophenyl-β-d-xylopyranoside (4NPX) and 4-nitrophenyl-α-l-arabinofuranoside (4NPA) of E186A is 100-fold that of wild-type enzyme, consistent with the view that, on the enzyme, protonation is of greater importance to the transition state of 4NPA whereas ring deformation dominates the transition state of 4NPX.  相似文献   

7.
Streptomyces sp I10-1 α-l-arabinofuranosidase efficiently produced l-arabinose from high arabinose-content corn hull arabinoxylan (ratio of arabinose to xylose, 0.6). The optimum pH at 40 °C was around 6, and the enzyme was stable from pH 5 to 11. The optimum temperature was 50 °C at pH 5, and the activity was stable at 40 °C. The enzymatic activity against corn hull arabinoxylan was 2.3 times higher than towards p-nitrophenyl-α-l-arabinofuranoside. Approximately 45 % l-arabinose recovery was achieved from corn hull arabinoxylan. It was considered that l-arabinose residues not removed by the enzyme were attributable to those linked with ferulic acid. The open reading frame of the enzyme gene consisted of 1,224 bp, and the predicted peptide was 408 amino acids, which corresponded to a molecular size of 45, 248 Da. It was presumed that the smaller molecular size (31,000 Da) estimated on SDS-PAGE resulted from proteolysis by proteases. I10-1 α-l-arabinofuranosidase belongs to the Alpha-l-AF C superfamily, which is associated with glycoside hydrolase family 51, but the properties were unique.  相似文献   

8.
A rapid and sensitive LC-MS method has been developed for the determination of luteolin-7-O-β-d-glucoside in rat plasma after solvent extraction. Separation was on an Elite Hypersil ODS2 column (250 mm × 4.6 mm i.d., 5 μm) with a mobile phase of acetonitrile-0.3% acetic acid (26:74, v/v). The samples were analyzed by using positive electrospray ionization MS in selected ion monitoring mode. The selected ions for luteolin-7-O-β-d-glucoside and the internal standard, isoquercitrin, were m/z 448.95 and m/z 464.95. Good linearity was observed over the range of 20–2,000 ng mL?1 with a lower limit of quantification of 20 ng mL?1. No interference peaks or matrix effects were observed. The validated method was applied to the pharmacokinetic study of luteolin-7-O-β-d-glucoside in rat plasma after intravenous administration of Kudiezi Injection.  相似文献   

9.
The effect of surface hydrophobicity and side-chain variation on xyloglucan adsorption onto cellulose microfibrils (CMF) is investigated via molecular dynamics simulations. A molecular model of CMF with (100), (010), (1–10), (110) and (200) crystal faces was built. We considered xylogluco-oligosaccharides (XGO) with three repeating units, namely (XXXG)3, (XXLG)3, and (XXFG)3 (where each (1,4)-β-d-glucosyl residue in the backbone is given a one-letter code according to its substituents: G = β-d-Glc; X = α-d-Xyl-(1,6)-β-d-Glc; L = β-d-Gal-(1,2)-α-d-Xyl-(1,6)-β-d-Glc; F = α-l-Fuc-(1,2)-β-d-Gal-(1,2)-α-d-Xyl-(1,6)-β-d-Glc). Our work shows that (XXXG)3 binds more favorably to the CMF (100) and (200) hydrophobic surfaces than to the (110), (010) and (1–10) hydrophilic surfaces. The origin of this behavior is attributed to the topography of hydrophobic CMF surface, which stabilizes (XXXG)3 in flat conformation. In contrast, on the rough hydrophilic CMF surface (XXXG)3 adopts a less favorable random-coil conformation to facilitate more hydrogen bonds with the surface. Extending the xyloglucan side chains from (XXXG)3 to (XXLG)3 hinders their stacking on the CMF hydrophobic surface. For (XXFG)3, the interaction with the hydrophobic surface is as strong as (XXXG)3. All three XGOs have similar binding to the hydrophilic surface. Steered molecular dynamics simulation was performed on an adhesive model where (XXXG)3 was sandwiched between two CMF hydrophobic surfaces. Our analysis suggests that this sandwich structure might help provide mechanical strength for plant cell walls. Our study relates to a recently revised model of primary cell walls in which extensibility is largely determined by xyloglucan located in limited regions of tight contact between CMFs.  相似文献   

10.
High-speed counter-current chromatography (HSCCC)—a support free all liquid–liquid chromatography technique—has been successfully used for the preparative isolation of isorhamnetin 3-O-β-d-glucoside, isorhamnetin 3-O-β-rutinoside, quercetin 3-O-β-d-glucoside, syringetin 3-O-β-d-glucoside and protocatechuic acid from sea buckthorn juice concentrate (Hippophaë rhamnoides L. ssp. rhamnoides, Elaeagnaceae). The preparative HSCCC instrument was a multilayer coil planet centrifuge equipped with three preparative coils. Separation was performed with a two phase solvent system (n-hexane–n-butanol–water, 1:1:2 v/v/v) in ‘head-to-tail’ mode. Each injection of 4.1 g crude ethyl acetate extract yielded isorhamnetin 3-O-β-d-glucoside (95 mg), isorhamnetin 3-O-β-rutinoside (10 mg), quercetin 3-O-β-d-glucoside (5 mg), and protocatechuic acid (34 mg) with purities >98%. The flavonoid syringetin 3-O-β-d-glucoside (2 mg) was a novel compound for H. rhamnoides. Chemical structures of all compounds were determined by HPLC–ESI–MS–MS, 1D-NMR (1H, 13C, DEPT 135) spectroscopy and for elucidation of glycosidic linkages 2D-NMR (HMBC) spectroscopy was used.  相似文献   

11.
For the first time an RP-LC method with diode-array detection has been developed for simultaneous analysis of three flavonoids [rhamnocitrin-3-O-β-d-galactopyranoside-4′-O-β-d-glucospyranoside (RGG), rhamnocitrin-3-O-β-d-galactopyranoside (RG), and 10-methoxymedicarpin (MC)] in a methanol extract of Oxytropis kansuensis Bunge whole plant. Separation was achieved on an ODS column within 18 min. The effect of mobile phase pH on separation of the three flavonoids was investigated. Compared with relative errors obtained by use of least-squares linear regression and logarithmic regression for data processing, weighted least-squares linear regression was more accurate. Response was a linear function of concentration in the ranges 0.0091–3.4, 0.013–4.9, and 0.0085–3.2 mg mL?1 for RGG, RG, and MC, respectively, with correlation coefficients >0.9997. The amounts of the three flavonoids in O. kansuensis Bunge were successfully analyzed with satisfactory repeatability and recovery.  相似文献   

12.
The gene encoding a glycoside hydrolase family 43 β-xylosidase (GbtXyl43A) from the thermophilic bacterium Geobacillus thermoleovorans strain IT-08 was synthesized and cloned with a C-terminal His-tag into a pET29b expression vector. The recombinant gene product termed GbtXyl43A was expressed in Escherichia coli and purified to apparent homogeneity. Michaelis–Menten kinetic parameters were obtained for the artificial substrates p-nitrophenyl-β-d-xylopyranose (4NPX) and p-nitrophenyl-α-l-arabinofuranose (4NPA), and it was found that the ratio k cat/K m 4NPA/k cat/K m 4NPX was ~7, indicting greater catalytic efficiency for 4NP hydrolysis from the arabinofuranose aglycon moiety. Substrate inhibition was observed for the substrates 4-methylumbelliferyl xylopyranoside (muX) and the arabinofuranoside cogener (muA), and the ratio k cat/K m muA/k cat/K m muX was ~5. The enzyme was competitively inhibited by monosaccharides, with an arabinose K i of 6.8?±?0.62 mM and xylose K i of 76?±?8.5 mM. The pH maxima was 5.0, and the enzyme was not thermally stable above 54 °C, with a t 1/2 of 35 min at 57.5 °C. GbtXyl43A showed a broad substrate specificity for hydrolysis of xylooligosaccharides up to the highest degree of polymerization tested (xylopentaose), and also released xylose from birch and beechwood arabinoxylan.  相似文献   

13.
Direct electrospray ionization mass spectrometry (ESI-MS) assay was used to investigate the stepwise binding of the GM1 pentasaccharide β-D-Galp-(1→3)-β-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Galp-(1→4)-β-D-Glcp (GM1os) to the cholera toxin B subunit homopentamer (CTB5) and to establish conclusively whether GM1os binding is cooperative. Apparent association constants were measured for the stepwise addition of one to five GM1os to CTB5 at pH 6.9 and 22 °C. The intrinsic association constant, which was established from the apparent association constant for the addition of a single GM1os to CTB5, was found to be (3.2 ± 0.2) × 106 M–1. This is in reasonable agreement with the reported value of (6.4 ± 0.3) × 106 M–1, which was measured at pH 7.4 and 25 °C using isothermal titration calorimetry (ITC). Analysis of the apparent association constants provides direct and unambiguous evidence that GM1os binding exhibits small positive cooperativity. Binding was found to be sensitive to the number of ligand-bound nearest neighbor subunits, with the affinities enhanced by a factor of 1.7 and 2.9 when binding occurs next to one or two ligand-bound subunits, respectively. These findings, which provide quantitative support for the binding model proposed by Homans and coworkers [14], highlight the unique strengths of the direct ESI-MS assay for measuring cooperative ligand binding.
Figure
?  相似文献   

14.
Immunoassays for the measurement of glucuronides in human urine can be a helpful tool for the assessment of human exposure to toxic chemicals. Therefore an enzyme immunoassay (EIA) for the specific detection of phenyl-β-d-thioglucuronide was developed. The immunoconjugate was formed by coupling p-aminophenyl-β-d-thioglucuronide to the carrier protein thyroglobulin leaving an exposed glucuronic acid. The hapten-protein conjugate was adsorbed to gold colloids in order to enhance the immunogenic effect. Rabbits were injected with the immunogold conjugates to raise polyclonal antibodies. The resulting competitive assay showed an inhibition by phenyl-β-d-thioglucuronide at sample concentrations of 23.0 ± 1.3 ng/mL (50% B/B0) and a high cross-reactivity to p-aminophenyl-β-D-thioglucuronide (120%). Little cross-reactivities (< 2%) were observed for potential urinary cross reactants. In addition human urine samples were incubated with β-glucuronidase in order to investigate the EIA for specific matrix effects. An integration of high-performance liquid chromatography (HPLC) and EIA was developed in an attempt to decrease the matrix effects and increase the sensitivity of the overall method. The hyphenated technique HPLC-EIA may be used to monitor human exposure to toxic thiophenol which is excreted by mammals as urinary phenyl thioglucuronide.  相似文献   

15.
This work reports the isolation of a serum lectin from cobia fish (Rachycentron canadum) named RcaL. Immunomodulatory activity on mice splenocyte experimental cultures through cytotoxic assays and cytokine production were also performed. RcaL was obtained through precipitation with ammonium sulphate and affinity chromatography on a Concanavalin A-Sepharose 4B column. The ammonium sulphate fraction F3 showed the highest specific hemagglutinating activity and was applied to affinity chromatography. The lectin was eluted with methyl-α-d-mannopyranoside. RcaL showed highest affinity for methyl-α-d-mannopyranoside and d-mannose; eluted fractions of RcaL agglutinated rabbit erythrocytes (titre, 128?1) retained 66 % of chromatographed lectin activity, and the obtained purification factor was 1.14. Under reducing conditions, a polypeptide band of 19.2 kDa was revealed in sodium dodecyl sulphate polyacrylamide gel electrophoresis (PAGE). PAGE confirmed RcaL as an acidic protein revealed in a single band. Cytotoxic and immunomodulatory assays with RcaL in mice splenocyte cultures showed that the lectin was not cytotoxic and induced higher interferon gamma and nitric oxide production in splenocyte cultures. Purified RcaL induced preferential Th1 response, suggesting that it acts as an immunomodulatory compound.  相似文献   

16.
A microanalytical technique is described for the electrofocused resolution of proteins and subsequent quantitation of their enzymatic activities. Protein samples (0.5–10 mg) were extracted from 50 mg of various human tissues or from 5 ml venous blood with sufficient enzymatic activity to hydrolyze 0.01 μM p-nitrophenyl-N-acetyl-β-d-glucosaminide per min at 37°C. Using this technique the activities of the human N-acetyl-β-d-hexosaminidases were investigated, thereby providing a useful tool for the clinical diagnosis of Tay-Sachs disease.  相似文献   

17.
In this study, we introduced a new strategy, feeding d-glucose, to overproduce extracellular 5-aminolevulinic acid (ALA) in the recombinant Escherichia coli. We investigated that the d-glucose concentration is dependent on extracellular ALA production. The results indicated that increasing d-glucose concentration in bacteria culture enhanced final cell density and ALA yield and simultaneously decreased the activities of ALA synthase (ALAS) and ALA dehydratase (ALAD); then, the inhibitory effect of d-glucose on ALAS activity was relieved with the metabolism of d-glucose. when 4.0 g/L d-glucose was added at late exponential phase; 1.46 g/L ALA was achieved in shaking culture, which is 47% or 109% higher than the ALA yields with 30 mM levulinic acid of ALAD inhibitor or no inhibitor. In jar fermenter, final extracellular ALA concentration reached 3.1 g/L by feeding with d-glucose.  相似文献   

18.
A β-galactosidase gene from Aspergillus oryzae was engineered utilizing codon usage optimization to be constitutively and highly expressed in the Pichia pastoris SMD1168H strain in a high-cell-density fermentation. After fermentation for 96 h in a 50-L fermentor using glucose and glycerol as combined carbon sources, the recombinant enzyme in the culture supernatant had an activity of 4,239.07 U mL?1 with o-nitrophenyl-β-d-galactopyranoside as the substrate, and produced a total of extracellular protein content of 7.267 g L?1 in which the target protein (6.24 g L?1) occupied approximately 86 %. The recombinant β-galactosidase exhibited an excellent lactose hydrolysis ability. With 1,000 U of the enzyme in 100 mL milk, 92.44 % lactose was degraded within 24 h at 60 °C, and the enzyme could also accomplish the hydrolysis at low temperatures of 37, 25, and 10 °C. Thus, this engineered strain had significantly higher fermentation level of A. oryzae lactase than that before optimization and the β-galactosidase may have a good application potential in whey and milk industries.  相似文献   

19.
A locally isolated strain of Aspergillus niger van Tieghem was found to produce thermostable β-xylosidase activity. The enzyme was purified by cation and anion exchange and hydrophobic interaction chromatography. Maximum activity was observed at 70–75 °C and pH 4.5. The enzyme was found to be thermostable retaining 91 and 87% of its original activity after incubation for 72 h at 60 and 65 °C, respectively, with 52% residual activity detected after 18 h at 70 °C. Available data indicates that the purified β-xylosidase is more thermostable over industrially relevant prolonged periods at high temperature than those reported from other A. niger strains. Maximum activity was observed on p-nitrophenyl-β-d-xylopyranoside and the enzyme also hydrolysed p-nitrophenyl β-d-glucopyranoside and p-nitrophenyl α-l-arabinofuranoside. The purified enzyme acted synergistically with A. niger endo-1,4-β-xylanase in the hydrolysis of beechwood xylan at 65 °C. During hydrolysis of pretreated straw lignocellulose at 70 °C using a commercial lignocellulosic enzyme cocktail, inclusion of the purified enzyme resulted in a 19-fold increase in the amount of xylose produced after 6 h. The results observed indicate potential suitability for industrial application in the production of lignocellulosic bioethanol where thermostable β-xylosidase activity is of growing interest to maximise the enzymatic hydrolysis of lignocellulose.  相似文献   

20.
Carbohydrate recognition of some bioactive symmetrical tripodal receptor type tris(2-aminoethyl)amine (TAEA) derivatives was investigated. In calorimetric experiments, the highest binding constant (Ka) of compound C (C35H49N5O4S) with methyl α-d-mannopyranoside was Ka = 858 M?1 with 1:1 stoichiometry. Formation of hydrogen bonds in binding between symmetrical tripodal receptor type compound C and sugars was suggested by the large negative values of ?H° (=?34 to ?511 kJ mol?1). In a comparison of each set of α- and β-anomers of some monosaccharides (methyl α/β-d-galactopyranoside, methyl α/β-d-glucopyranoside, and methyl α/β-l-fucopyranoside), compound C showed that the binding constant of β-anomer was larger than that of the corresponding α-anomer, indicating higher β-anomer selectivity. The calculated energy-minimized structure of the complex of compound C with guest methyl α-d-mannopyranoside is also presented. The experimental results obtained from this work indicated that symmetrical tripodal receptor type TAEA derivative C has a lectin-like carbohydrate recognition property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号