首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
汪明  谷永先  季海铭  杨涛  王占国 《中国物理 B》2011,20(7):77301-077301
We investigate the band structure of a compressively strained In(Ga)As/In 0.53 Ga 0.47 As quantum well (QW) on an InP substrate using the eight-band k · p theory.Aiming at the emission wavelength around 2.33 μm,we discuss the influences of temperature,strain and well width on the band structure and on the emission wavelength of the QW.The wavelength increases with the increase of temperature,strain and well width.Furthermore,we design an InAs /In 0.53 Ga 0.47 As QW with a well width of 4.1 nm emitting at 2.33 μm by optimizing the strain and the well width.  相似文献   

2.
顾溢  王凯  李耀耀  李成  张永刚 《中国物理 B》2010,19(7):77304-077304
The structural and optical characteristics of InP-based compressively strained InGaAs quantum wells have been significantly improved by using gas source molecular beam epitaxy grown InAs/In 0.53 Ga 0.47 As digital alloy triangular well layers and tensile In 0.53 Ga 0.47 As/InAlGaAs digital alloy barrier layers.The x-ray diffraction and transmission electron microscope characterisations indicate that the digital alloy structures present favourable lattice quality.Photoluminescence (PL) and electroluminescence (EL) measurements show that the use of digital alloy barriers offers better optical characteristics than that of conventional random alloy barriers.A significantly improved PL signal of around 2.1 μm at 300 K and an EL signal of around 1.95 μm at 100 K have been obtained.  相似文献   

3.
The structural and optical characteristics of InP-based compressively strained InGaAs quantum wells have been significantly improved by using gas source molecular beam epitaxy grown InAs/Ino.53Ga0.47As digital alloy triangular well layers and tensile Ino.53Ga0.47As/InAiGaAs digital alloy barrier layers. The x-ray diffraction and transmission electron microscope characterisations indicate that the digital alloy structures present favourable lattice quality. Photo- luminescence (PL) and electroluminescence (EL) measurements show that the use of digital alloy barriers offers better optical characteristics than that of conventional random alloy barriers. A significantly improved PL signal of around 2.1μm at 300 K and an EL signal of around 1.95μm at 100 K have been obtained.  相似文献   

4.
In the present paper, a comprehensive computer simulation is used to determine optimal structure of the InP-based GaInNAs quantum-well (QW) active region and to investigate a possibility of reaching room-temperature (RT) continuous-wave (CW) single-fundamental-mode 2.33-μm operation of vertical-cavity surface-emitting laser (VCSEL) with such an active region. From among various considered InP-based active regions, the one with the Ga0.15In0.85N0.015As0.985/Al0.138Ga0.332In0.530As QW, i.e. with barriers lattice matched to InP, seems to be optimal for the 2.33-μm VCSEL performance. Its QW material is chosen for the required long-wavelength emission whereas its barrier is expected to ensure promising laser performance at room and higher temperatures. The latter is mostly connected with the QW conduction band offset equal in the above active region to as much as 413 meV, which is much larger than those of its possible lattice matched to InP competitors, e.g. 276 meV for the Ga0.47In0.53As barrier and 346 meV for the Ga0.327In0.673As0.71P0.29 one. Our simulation reveals that from among various considered structures, a VCSEL with a 4-μm-diameter tunnel junction and two 6-nm Ga0.15In0.85N0.015As0.985/Al0.138Ga0.332In0.530As QWs exhibits the lowest calculated threshold current of 0.88 mA. Its promising RT CW performance suggests that it may represent a very interesting alternative to GaSb-based VCSELs.  相似文献   

5.
We report a type-Ⅱ GaSb-based interband cascade laser operating a continuous wave at room temperature. The cascade region of interband cascade laser was designed using the ‘W' configuration of the active quantum wells and the ‘Carrier Rebalancing' method in the electron injector. The devices were processed into narrow ridges and mounted epitaxial side down on a copper heat sink. The 25-μm-wide, 3-mm-long ridge without coated facets generated 41.4 mW of continuous wave output power at T = 15℃. And a low threshold current density of 267 A/cm~2 is achieved. The emission wavelength of the ICL is 3452.3 nm at 0.5 A.  相似文献   

6.
We demonstrated a diode-pumped vertical external cavity surface emitting laser with simple plane-concave cavity. When the pump power at a wavelength of 811.6 nm is 1.5 W, the maximum output power is 40.4 mW at the wavelength of 1005.8 nm. The optical-optical conversion efficiency is 2.7%. .  相似文献   

7.
Strain-compensated InGaN quantum wells with tensile AlGaN barriers are analyzed as improved gain media for laser diodes emitting at 420–500 nm. The band structure is calculated using the 6-band k ·p formalism, taking into account valence band mixing, strain effect, and spontaneous and piezoelectric polarizations. The optical gain analysis exhibits significant improvement in the peak optical gain and differential gain for the strain-compensated structures. The calculation also shows a significant reduction of threshold carrier density and current density for diode lasers employing the strain-compensated InGaN–AlGaN QW active regions.  相似文献   

8.
彭应全  张福甲  台夕市  何锡源  张旭 《中国物理》2002,11(10):1076-1081
The mechanism of carrier transport in organic light-emitting devices is numerically studied,on the basis of trappedcharge-limited conduction with an exponential trap distribution.The spatial distributions of the electrical potential,field and carrier density in the organic layer are calculated and analysed.Most carriers are distributed near the two electrodes,only a few of them are distributed over the remaining part of the orgaic layer,The carriers are accumulated near the electrodes,and the remaining region is almost exhausted of carriers.When the characteristic energy of trap distribution is greater than 0.3eV.it leads to a reduction of current density.In order to improve the device efficiency,organic materials with minor traps and low characteristic energy should be chosen.The diffusion current is the dominant component near the injection electrode.whereas the drift current dominates the remaining region of the organic layer.  相似文献   

9.
李东临  曾一平 《中国物理》2006,15(11):2735-2741
We have carried out a theoretical study of double-5-doped InAlAs/InGaAs/InP high electron mobility transistor (HEMT) by means of the finite differential method. The electronic states in the quantum well of the HEMT are calculated self-consistently. Instead of boundary conditions, initial conditions are used to solve the Poisson equation. The concentration of two-dimensional electron gas (2DEG) and its distribution in the HEMT have been obtained. By changing the doping density of upper and lower impurity layers we find that the 2DEG concentration confined in the channel is greatly affected by these two doping layers. But the electrons depleted by the Schottky contact are hardly affected by the lower impurity layer. It is only related to the doping density of upper impurity layer. This means that we can deal with the doping concentrations of the two impurity layers and optimize them separately. Considering the sheet concentration and the mobility of the electrons in the channel, the optimized doping densities are found to be 5 × 10^12 and 3× 10^12 cm^-2 for the upper and lower impurity layers, respectively, in the double-5-doped InAlAs/InGaAs/InP HEMTs.  相似文献   

10.
Transient characteristics of the InGaP–GaAs–InGaAs (quantum well)-GaAs transistor laser are studied. Rate equations are numerically solved to obtain the response of current density and photon density. Expression of resonance frequency $f_{r}$ is obtained by solving the rate equations analytically. It has been found that the $f_{r}$ increases with decreasing spontaneous carrier lifetime and with increasing value of the bias current density.  相似文献   

11.
We elaborate a high-power, high-efficiency cw Tm:YAP laser dual-end-pumped by the laser diode. With 41.9?W pumping power, we obtain a maximum cw output power of 14.7?W at 1988?nm with a slope efficiency of 43.8%, corresponding to an optical conversion efficiency of 35.1%. At the maximum laser output, we measure a beam quality of M 2?~?1.9.  相似文献   

12.
Dielectric–metal–dielectric sandwich structures have been fabricated on top of an InGaAs/GaAs single quantum well (QW) structure to enhance atomic interdiffusion across the QW interfaces at elevated temperature during rapid thermal annealing using a halogen lamp as the heating source. The QW intermixing enhancement is realized during rapid thermal annealing. By placing a properly designed SiO2–Ag–SiO2 structure on top of the QW sample, a blueshift in photoluminescence emission from 920 to 882 nm was observed, larger than that obtained in a SiO2-capped QW annealed at the same condition. Finite-difference time-domain simulation and optical reflectance measurements showed that the enhanced QW intermixing is due to the plasmonic resonance-enhanced light absorption and suppressed light reflection from the SiO2–Ag–SiO2 structure.  相似文献   

13.
We report the work on erbium:ytterbium-doped double clad fibre laser (EYDFL), that is pumped at 976 nm. The maximum output power generated is 13.6 W in 1550 nm region with a slope efficiency of about 21%. To the best of our knowledge, this is the highest power reported from an EYDFL, that uses commercially available off-the-shelf large mode area Er:Yb-doped double-clad fibre.  相似文献   

14.
Ma J  Xie GQ  Lv P  Gao WL  Yuan P  Qian LJ  Yu HH  Zhang HJ  Wang JY  Tang DY 《Optics letters》2012,37(11):2085-2087
We experimentally demonstrated a passively mode-locked femtosecond laser by using a graphene-based saturable absorber mirror (graphene SAM) in the spectral region of 2 μm. The graphene SAM was fabricated by transferring chemical-vapor-deposited, high-quality, and large-area graphene on a highly reflective plane mirror. Stable mode-locked laser pulses as short as 729 fs were obtained with a repetition rate of 98.7 MHz and an average output power of 60.2 mW at 2018 nm.  相似文献   

15.
The small-signal modulation characteristics of 1.5 m lattice-matched InGaNAs/GaAs and InGaAs/InP quantum well lasers and their temperature dependence have been calculated. It is found that the maximum bandwidth of the InGaNAs/GaAs quantum well lasers is about 2.3 times larger than that of the InGaAs/InP quantum well lasers due to the high differential gain which results from the large electron effective mass in the dilute nitride system. The slope efficiency for the 3 dB bandwidth as a function of optical density is twice as large for InGaNAs/GaAs as for InGaAs/InP quantum well lasers.  相似文献   

16.
We present a derivation and, based on it, an extension of a model originally proposed by V.G. Niziev to describe continuous wave laser cutting of metals. Starting from a local energy balance and by incorporating heat removal through heat conduction to the bulk material, we find a differential equation for the cutting profile. This equation is solved numerically and yields, besides the cutting profiles, the maximum cutting speed, the absorptivity profiles, and other relevant quantities. Our main goal is to demonstrate the model’s capability to explain some of the experimentally observed differences between laser cutting at around 1 and 10 μm wavelengths. To compare our numerical results to experimental observations, we perform simulations for exactly the same material and laser beam parameters as those used in a recent comparative experimental study. Generally, we find good agreement between theoretical and experimental results and show that the main differences between laser cutting with 1- and 10-μm beams arise from the different absorptivity profiles and absorbed intensities. Especially the latter suggests that the energy transfer, and thus the laser cutting process, is more efficient in the case of laser cutting with 1-μm beams.  相似文献   

17.
Sorbello  G.  Taccheo  S.  Della Valle  G.  Laporta  P.  Cianci  E.  Foglietti  V.  Jiang  S.  Peyghambarian  N. 《Optical and Quantum Electronics》2003,35(7):669-674
Robust single-frequency operation of an erbium–ytterbium glass waveguide laser based on the twisted-mode technique is demonstrated. A single-mode output power of 0.7 mW with relative-intensity-noise peak value of –90 dB/Hz has been obtained.  相似文献   

18.
Yi Zhang 《中国物理 B》2021,30(9):94204-094204
We report a GaSb-based type-I quantum well cascade diode laser emitting at nearly 2-μm wavelength. The recycling of carriers is realized by the gradient AlGaAsSb barrier and chirped GaSb/AlSb/InAs electron injector. The growth of quaternary digital alloy with a gradually changed composition by short-period superlattices is introduced in detail in this paper. And the quantum well cascade laser with 100-μm-wide, 2-mm-long ridge generates an about continuous-wave output of 0.8 W at room temperature. The characteristic temperature T0 is estimated at above 60 K.  相似文献   

19.
In this study, two-section mode-locked semiconductor lasers with different numbers of quantum wells and different types of waveguide structures are made. Their ultrashort pulse features are presented. The spectral dynamical behaviors in these lasers are studied in detail. In the simulation part, a two-band compressive-strained quantum well(QW) model is used to study thermally induced band-edge detuning in the amplifier and saturable absorber(SA). A sudden blue shift in laser spectrum is expected by calculating the peak of the net gain. In the experiment part, the sudden blue shift in the emission spectrum is observed in triple QW samples under certain operating conditions but remains absent in single QW samples.Experimental results reveal that blue shift phenomenon is connected with the difference between currents in two sections.Additionally, a threshold current ratio for blue-shift is also demonstrated.  相似文献   

20.
The interaction of laser radiation with matter leads to the certain kinds of modelling of its surface or volume. These effects have been demonstrated for a lot of materials, even causing the formation of new scientific and industrial domain, which is undoubtedly laser material processing and as well as laser cleaning of artworks. Those applications lie in the so-called “low' region of laser energy densities, represented for short laser pulses by power densities below 109 W/cm2. Paper presents set of equations describing in one-dimensional (1D) model phenomena accompanying to laser–matter interaction. Target geometry includes two and four layers of different materials, irradiated by ns laser pulses. Effects of radiation absorption and transport, heat conductivity, target transit to plastic state, melting and evaporation are taken into consideration. The part of the paper is devoted to the discussion of numerical results, selected in such a way to illustrate the phenomenon of radiation interaction with materials as well as to show, in whole, possibilities of computer simulation methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号