首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
生物质秸秆热重分析及几种动力学模型结果比较   总被引:42,自引:9,他引:42  
利用热重分析在不同升温速率和氮气气氛下对两种生物质(玉米秸秆和稻秆)的热失重行为进行了研究。根据热重实验数据,采用四种利用热分析获取动力学参数的方法(Coats-Redfern法,Doyle法,最大速率法和分布活化能模型(DAEM)),计算生物质秸秆热分解反应活化能E、反应级数n及频率因子A,并进行比较。结果表明,采用不同的处理方法,得出的热分解动力学参数不同。利用Coats-Redfern法,玉米秸秆和稻秆在热解主要阶段(失重约5 w%~80 w%时)可由一段一级反应过程描述,升温速率10 K/min时活化能值分别为68.8 kJ/mol和70.0 kJ/mol。Doyle法和DAEM模型得到的结果较为接近,可以得到生物质热解过程中的活化能随失重率的变化曲线。生物质秸秆热解包含分子键能断裂的一系列复杂、连续反应过程。  相似文献   

2.
采用热重-差示扫描量热-质谱联用技术(TG-DSC-MS)研究了腰果壳油改性热塑性酚醛树脂在不同气氛下热分解过程中质量、能量、气体产物的变化规律,利用Coats-Redfern法计算了腰果壳油改性热塑性酚醛树脂热分解的动力学参数。结果表明,裂解气氛能显著影响样品的热解过程:与氮气气氛下相比,样品在空气气氛下的失重区间总数和主失重区温度范围均增加,且有2个主失重区,裂解更加完全;氮气气氛下,在主失重区表现明显的吸热效应,而在空气气氛下,第Ⅰ主失重区的热效应与升温速率有关,第Ⅱ主失重区放热明显;在反应深度α为0.10~0.90的区间内,分别采用一级四段、一级六段对样品在氮气、空气气氛下的热裂解过程进行模拟,得到氮气气氛下各段的平均活化能为17、65、32、13 kJ·mol-1,空气气氛下各段的平均活化能为72、23、14、12、19、57 kJ·mol-1。不同气氛下,MS总离子流图信号强度与TG曲线的变化规律具有一致性,但气氛种类对裂解产物种类和相对含量有较大影响:惰性气氛(Ar气)下,样品更容易裂解成烷基酚(苯酚、甲基苯酚、乙基苯酚、二甲苯酚、三甲苯酚)、烷基苯(苯、甲苯、二甲苯、三甲苯、乙基甲苯)等芳香烃类和烷烃类(甲烷、丙烷、丁烷、戊烷、己烷)等气态产物,芳香烃化合物为主产物,生成量在305~333℃达到第一个峰值,408~460℃附近达到第二峰值;而在有氧的空气气氛中,CO2、H2O和甲酸为主要气体产物,释放量明显比惰性气氛下大,芳香烃类化合物只在第一个主失重区有逸出,种类和释放量明显较少,且未检测到烷烃类化合物。  相似文献   

3.
基于TGA-FTIR联用技术研究ABS树脂的热氧降解行为   总被引:1,自引:0,他引:1  
采用热失重-傅立叶变换红外光谱(TGA-FTIR)联用技术研究了空气气氛下ABS树脂的热稳定性及热氧降解失重情况。研究了ABS在4个不同升温速率下的失重情况;采用TGA-FTIR联用技术对10℃/min等速升温下ABS失重过程的逸出气体进行分析;采用热分解动力学方法分析ABS的热氧降解过程,计算热分解活化能。结果表明,ABS的TGA曲线有两个失重区间:第一区间是ABS的急剧氧化降解过程,活化能(Ea)为191.8~262.8 kJ.mol-1,第二区间是成炭产物的氧化,Ea约为139.7 kJ.mol-1;升温速率越小,ABS热氧降解速率越慢,交联成炭产物越多,有利于抑制ABS的降解;由FTIR测试和Ea变化发现,热氧降解反应为多步复杂反应,初期时氧化反应和氧化断链同时进行,并以氧化断链反应为主,随着分子链上产生的双键增多发生交联反应,失重率大于80%时开始炭化反应,最终交联炭层发生氧化反应生成CO2。  相似文献   

4.
蔗渣的热解与燃烧动力学特性研究   总被引:5,自引:2,他引:5  
利用热重分析仪对蔗渣在不同升温速率下的热解、燃烧失重特性进行了研究。采用Friedman法对反应过程中可能存在的反应机理进行初步判断,蔗渣热解过程由其主要组分半纤维素、纤维素和木质素热解的三个独立的平行反应来描述,相应的反应活化能分别为203.92 kJ·mol-1、238.50 kJ·mol-1和77.11 kJ·mol-1; 蔗渣燃烧过程分为两段,第一段类似于其热解过程,第二段由木质素热解和残焦燃烧共同组成的连续反应,反应活化能为255.57 kJ·mol-1和159.11 kJ·mol-1。通过非线性回归法拟合获得的曲线与实验曲线基本一致,证实了蔗渣的热解、燃烧过程中存在着上述假定的反应机理。  相似文献   

5.
司他夫定的热分解机理及动力学   总被引:3,自引:0,他引:3  
王学杰  游金宗 《应用化学》2011,28(6):709-715
采用TG-DTG-DSC测定司他夫定(STVD)在N2气和空气气氛中的热分解过程及其在热分解过程中不同阶段残留物的红外光谱,运用量子化学GAMESS软件计算STVD分子的键级,探讨了STVD的热分解机理。 采用Ozawa方法计算STVD各阶段热分解反应动力学参数,采用Dakin方程推算了不同使用温度下STVD的预期寿命。结果表明,STVD的热分解过程是一个三阶段过程,起始热分解步骤是联接胸腺嘧啶环与五元环的C-N键的断裂。 在N2气中,第一阶段热分解温度范围为139~173 ℃,失重21.2%,反应活化能Ea=168.9 kJ/mol,指前因子A=2.884×1019 min-1;第二阶段热分解温度范围为173~313 ℃,失重56.2%,Ea=96.4 kJ/mol,A=2.884×108 min-1;第三阶段分解速率缓慢,至880 ℃仍有10.9%残重。 在空气中,第一阶段热分解温度范围为139~166 ℃,失重19.1%,Ea=168.1 kJ/mol,A=2.188×1019 min-1;第二阶段热分解温度范围为166~314 ℃,失重53.9%,Ea=154.9 kJ/mol,A=8.913×1013 min-1;第三阶段热分解温度范围314~550 ℃,失重27%,Ea=116.9 kJ/mol,A=3.548×108 min-1。 STVD在常温下具有较好的热稳定性。  相似文献   

6.
为了获得循环流化床工艺下不同反应气氛对准东高钠煤中钠的迁移转化与积灰特性的影响,在0.4t/d循环流化床实验装置上开展了相同床温(950℃)下的新疆沙尔湖高钠煤的气化(还原性气氛)与燃烧(氧化性气氛)实验研究。结果表明,气化和燃烧气氛下飞灰与积灰中Na主要以NaCl的形式存在;气化比燃烧更容易将Na、Cl固留在底渣和飞灰中,相应的进入气相中的Na、Cl更少;燃烧气氛下,部分NaCl会被烟气中的SO_2硫化,生成稳定性更高的Na_2SO_4并冷凝在飞灰和积灰棒表面,燃烧过程中产生的飞灰粒径更细,积灰更严重;沙尔湖煤燃烧与气化过程中存在HCl对金属壁面的腐蚀。  相似文献   

7.
采用热天平对神府煤1200℃快速热解焦进行常压水蒸气/惰性气气化及水蒸气/氢气气化。考察神府煤焦在875℃~950℃时与水蒸气/惰性气的气化反应和水蒸气/氢气的气化反应特性,两者的特征曲线明显不同。不加氢的水蒸气气化反应速率随碳转化率的增加缓慢而均匀地下降;加氢水蒸气气化反应速率随碳转化率的增加先迅速降低,而后降低较缓慢。此种形式的气化曲线以往的动力学模型很难进行模拟,研究根据随机孔模型提出了一个新的气化动力学模型。此模型拟合的数据与实验数据比较,证明了修正的随机孔模型可以更好的模拟煤焦的加氢水蒸气气化,相关系数达到0.996以上。用修正模型求得的神府煤焦加氢水蒸气气化的活化能为251.990kJ/mol,指前因子为5.97877×109min-1。  相似文献   

8.
为了对新型卷烟产品进行剖析,利用热重/差热分析研究了空气氛围下典型性碳加热卷烟"Eclipse"各组成成分的热行为,并计算了主要失重温度段的活化能。结合热失重数据和组成结构对其分解机理进行初步推断和验证。结果表明:1碳棒在356~560℃燃烧放热,失重65%,活化能为149.44 k J/mol,热重/差热分析显示含有碳酸钙成分,空气氛围下碳棒燃烧热解更完全;2200~380℃为卷烟纸主要的热解失重阶段,失重62%,主要是纤维素热解造成。其中碳酸钙含量为12%左右,金属箔为铝箔;3薄片1在191~364℃失重49%,可能是单糖、小分子物质以及纤维素热分解。薄片2在97~253℃失重51%,保润剂、水分和挥发性物质受热分解以及纤维素晶体单糖和其他一些小分子物质因热裂解。薄片1和薄片3结构和成分相似,都接近传统卷烟烟丝,薄片2含更多的单糖和水分。本研究为新型卷烟材料和热源的研发积累详实数据,为进一步研制烟叶原料加热非燃烧状态下化学成分释放和烟丝配比的实验装置和分析方法奠定基础。  相似文献   

9.
聚芳醚醚酮的热老化寿命研究   总被引:1,自引:0,他引:1  
本工作用热重法(TG)研究了聚芳醚醚酮(PEEK)在空气和氮气中的热分解反应过程;确定了PEEK在这两种气氛中的热分解反应模型均符合无规引发断裂模型;在空气中PEEK的热分解显示两个过程,由此计算其在空气中第一阶段的热分解和氮气中的热分解反应活化能分别为214.7kJ/mol和232.2kJ/mol;由热分解反应动力学参数推算出热老化寿命曲线,并讨论了实验条件对结果的影响,进而以失重5%作为材料寿终指标估算出PEEK在氮气和空气中使用10年的最高温度分别为307℃和274℃。  相似文献   

10.
采用热重法,以氮气为保护气,分别在5、10、15、20℃/min的升温速率下,测得五倍子醛的热重-微分热重(TG-DTG)曲线,并在10℃/min的升温速率下测得样品的差示扫描量热(DSC)曲线。结合热失重数据和五倍子醛结构对其分解机理进行推断和验证,并运用双外推法对五倍子醛的热解动力学进行分析,求得原始状态和热平衡态下的动力学参数。研究结果表明,五倍子醛晶体在升温过程中先经历了非结合水和结合水的受热挥发阶段,然后在163℃之后发生热分解,分子中醛基断裂失去1分子的CO;随着升温速率的升高,五倍子醛的分解反应向高温区域移动,最大失重速率依次减小;热解活化能Eα为286.21 kJ/mol,指前因子lnA为70.21,热解机理函数g(α)=[-ln(1-α)]2/3,反应级数n=2/3;热解活化能随转化率的增加逐渐减小;经动力学参数推断,在室温(25℃)下,五倍子醛的贮存期为4~5年。  相似文献   

11.
多孔物质气固反应动力学研究   总被引:1,自引:0,他引:1  
利用自主研制的微型流化床反应分析仪(MFBRA)在等温条件下测试了高比表面活性炭氧化反应,并根据基于固体转化的热分析动力学方法及考虑气体在微孔内扩散与反应的应用化工动力学方法求算了动力学参数.在内外扩散抑制最小化的实验条件下,粒径小于5μm的活性炭在700-1000℃的燃烧反应动力学研究表明,根据微型流化床中实验数据,采用等温热分析动力学方法求算得内扩散控制区活化能约为95kJ/mol;弓l入化工动力学方法中的随机孔模型对低温区等温燃烧数据拟合,可得孔结构参数在0.17m^-3左右,反应活化能为178kJ/mol,约为内扩散反应活化能的两倍,最为接近本征的碳燃烧反应活化能.  相似文献   

12.
烟碱盐合成及应用是新型烟草制品配方开发中的关注热点,烟碱盐的热稳定性直接影响烟碱释放和烟草制品的感官质量。本文利用热重分析技术分别考察了氮气和空气气氛下六种烟碱盐的热稳定性,分析了不同烟碱盐热失重特性差异,并基于单一升温速率的Coats-Redfern法获得了不同烟碱盐的热失重动力学模型及参数。结果表明:(1)各烟碱盐的热失重行为差异明显,热稳定性表现各异。草酸烟碱盐和没食子酸烟碱盐的起始分解温度及完全分解温度均相对较高;同时最大失重速率也相对较大,半峰宽较窄,热分解过程较为剧烈。磷酸烟碱盐最大失重速率最低,半峰宽最宽,热分解过程最为缓和,在热解温度为450℃时的失重率约为60%。(2)六种烟碱盐热分解动力学的最适反应机理模型不一,动力学参数也存在一定的差异,两种气氛下活化能值分别介于40.76~160.19和52.27~392.11 kJ·mol-1之间,指前因子范围为6.26×103~6.78×1017 和2.76×103~4.54×1041 min-1  相似文献   

13.
本研究采用不等温热重法研究六种纤维(针叶、阔叶、竹、亚麻、草和棉)在N2和空气气氛下的热解和燃烧特性,并采用Friedman法对其进行动力学分析。结果表明,纤维不同的热解和燃烧特性参数与其自身结构组成有关。纤维在热解和燃烧过程中,其挥发分析出温度Ts、终止温度Th、DTG峰温Tmax、固定碳燃烧峰温、最大质量损失速率、热解指数P和燃烧指数S均随着升温速率的增加而增加;在N2气氛下,亚麻纤维Tmax最大,竹纤维Tmax最小,棉纤维的Ts最大,草纤维的最大热解质量损失速率-(dm/dt)max、热解指数P和燃烧指数S均最小;在转化率为0.05-0.85条件下,阔叶纤维平均表观活化能最小(173.3 kJ/mol),竹纤的最大(201.10 kJ/mol)。在空气气氛下,所有纤维的热解过程的Tmax均低于N2条件下,在转化率为0.05-0.65时,纤维在空气中热解的表观活化能Eα  相似文献   

14.
采用热重分析仪研究酚醛树脂保温板粉体热解行为。采用lnln法探讨等温热解过程动力学,采用Eyring方程探讨热解活化热力学参数。结果表明:酚醛树脂保温板粉体,在800℃内,非等温热解分为四个阶段,各阶段失重率依次为9%、10%、24%、25%;低于523K和高于573K时等温过程热解失重率低于523-573K温度段。lnln法获得酚醛树脂保温板粉体热解表观活化能为40.36 kJ·mol~(-1);Eyring法获得热分解的摩尔活化焓△H~≠、摩尔活化熵△S~≠分别为35.87 kJ·mol~(-1)和-202 J·mol~(-1)·K~(-1),摩尔活化自由能△G~≠值在讨论温度范围内皆为正,表明热解过程需要引入热量并且为非自发分解反应,热解需要经历活化络合态且络合态系统比初始状态更有序。  相似文献   

15.
Ce2O3对APP-PER-MA膨胀阻燃体系热解过程的协效作用   总被引:1,自引:0,他引:1  
采用热重分析和红外光谱技术研究了氧化铈(Ce2O3)对以聚磷酸铵(APP)为酸源、季戊四醇(PER)为炭源、蜜胺(MA)为气源的经典膨胀型阻燃剂(IFR)热分解性能的影响。 结果表明,300~400 ℃时Ce2O3的存在加快了体系的分解和无机酸的生成速度,改变了IFR热解发生的时间,但是并没有从根本上改变热解过程;Ce2O3的添加使IFR阻燃剂第一阶段的热解活化能由65.73 kJ/mol提高至73.47 kJ/mol,第二、三、四阶段的热解活化能分别由167.46、135.13、141.34 kJ/mol降低至85.25、96.08、58.18 kJ/mol,并对IFR分解各阶段残留量有很大影响。  相似文献   

16.
聚甲基丙烯酸甲酯热氧化降解的化学动力学研究   总被引:1,自引:0,他引:1  
使用质谱、热分析手段研究了PMMA热解反应.结果表明,在氮气中,PMMA-CH=CH2有两个失重阶段,分别对应于主链末端双键引发的断链和主链无规则断链反应,转折点的失重率约为26%.其中,第一阶段的失重速率受扩散过程控制,平均表观活化能E为158.5 kJ/mol, lnA为27.69;第二失重阶段为1.5级化学反应,平均表观活化能E为214.79 kJ/mol, lnA为40.46.在空气中, PMMA也有两个失重阶段,反应机理为1级化学反应,转折点处的失重率约为70%.其中在第一失重阶段平均表观活化能E为130.32 kJ/mol, lnA为24.81,在此阶段中, 过氧化基团的分解反应对PMMA的失重速率有重要影响; 在空气中第二失重阶段平均表观活化能E为 78.25 kJ/mol, lnA为13.97.  相似文献   

17.
氧化性气氛下流化床中煤的热解脱硫及硫的分布   总被引:5,自引:2,他引:5  
兖州(YZ)原煤,在氧气体积分数为3.0%、5.6%、8.7%,热解温度400℃~800℃, 热解停留30min,在流化床反应器中进行了热解脱硫实验。结果表明,兖州煤在3.0%O2,600℃时的脱硫效果最佳,可达70%;此时的黄铁矿硫全部脱除,而有机硫也可脱除60%以上。而相同温度惰性气氛下的总硫和有机硫的脱除率则分别为25%和15%。在氧化性气氛下,脱除的硫主要分布在焦油中;随着氧气体积分数的提高,半焦收率下降的很快,下降幅度要比脱硫率的增加幅度大。因此,氧气体积分数过高,在选择性断裂C—S键的同时,也使C—C键发生了断裂。  相似文献   

18.
利用热重分析仪(TGA)对预氧化聚铝碳硅烷(PACS)纤维进行了热动力学研究, 用改良的Coats-Redfern法计算了动力学参数, 用Doyle法计算了理论失重值, 并根据FT-IR, XRD和SEM对其热分解的机理进行了分析. 结果表明, 在热分解反应的主要阶段, 预氧化纤维的反应活化能低于PACS纤维, 氧的引入有利于纤维的热分解; 快速升温有利于预氧化PACS纤维的热分解. 在初始分解阶段, 主要为低分子量的PACS和H2O的逸出, 同时≡Si—H键之间以及≡Si—H与≡Si—CH3键发生了脱氢、脱CH4反应, 从而导致交联程度的增加; 随热分解温度进一步的提高, 分子的有机侧基急剧热解, 分解产物从有机物转变为存在部分微晶的无机结构; 热分解温度继续提高, 纤维结构进一步完善, 1300 ℃左右, β-SiC晶粒大小约为2~4 nm左右, 纤维具有较好的性能.  相似文献   

19.
以TG-DTG为手段,研究了双酚S-二(5,5-二甲基-1,3-二氧杂己内磷酸酯)(FR)在氮气气氛中的热分解动力学,利用Kissinger和Flynn-Wall-Ozawa(FWO)法对FR进行热分解动力学分析,求出了该物质的热分解动力学参数.结果表明,Kissinger法所求得的活化能为190.16 kJ.mol-1,指前因子lgAk为17.42 s-1;FWO法所求得的活化能为198.48 kJ.mol-1.Coats-Redfern方法得到其热分解动力学方程为g(α)=(1-α)-2.  相似文献   

20.
杉木热解及燃烧特性热天平模拟试验研究   总被引:6,自引:2,他引:4  
对南方森林主要树种-杉木的变工况热解行为进行了热重分析(TG)和差热分析(DTG)研究。将试样分别加热到200 ℃、300 ℃、400 ℃和500 ℃做空气变氮气、氮气变空气热天平试验,模拟实际火场由于火势发展产生的局部缺氧状态及由缺氧状态转变为富氧的状态;在空气气氛下将试样分别加热到250 ℃、300 ℃、350 ℃、400 ℃和450 ℃,然后冷却到50 ℃再继续加热直到700 ℃,模拟火场中可燃物不完全燃烧后的回燃情况。通过试验结果分析,深入研究了环境气氛变化对试样热解的影响。给出了杉木热解的两阶段一级反应模型,通过模型计算得出在233.3 ℃~369.9 ℃、369.9 ℃~490.8 ℃热解二阶段的活化能分别为77.85 kJ·mol-1、138.18 kJ·mo-1,频率因子分别为1.95×106、 4.84×109。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号