首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为深入理解CO_2对NO异相还原的影响,本研究基于密度泛函理论,对CO_2参与下的煤焦-NO异相还原反应机理进行研究,并选取armchair苯环模型模拟焦炭表面。结构优化采用B3LYP-D3/6-31G(d)方法,单点能计算采用B3LYPD3/def2-TZVP方法。研究表明,CO_2吸附后形成的羰基与吸附态NO反应生成CO_2,继而CO_2脱附为后续NO吸附及N_2脱附提供邻近的碳活性位点。热力学研究表明,无CO_2参与条件下,反应放热853.9 kJ/mol,决速步能垒为297.0 kJ/mol;CO_2参与条件下,反应放出593.7 kJ/mol的热量,决速步能垒为214.1 kJ/mol。动力学研究表明,在298.15–1800 K的温度下,CO_2参与条件下的反应速率常数大于无CO_2参与条件下的反应速率常数。综合热力学和动力学研究结果发现,CO_2对NO的异相还原反应具有促进作用。  相似文献   

2.
选用合理简化的焦炭模型,对煤焦燃烧过程中N2O的异相生成和分解机理进行了分子水平上的研究。采用UB3LYP/6-31G(d)密度泛函理论方法优化得到了反应路径上反应物、产物、中间体和过渡态的几何构型和各中间反应的活化能和反应焓变。NO与其预先吸附在焦炭表面解离生成的表面氮组分反应生成N2O的路径有两个,需要克服的势垒分别为69.3kJ/mol和200.0kJ/mol;NO亦可直接与焦炭中的吡啶氮结合释放出N2O,该反应路径所需克服的最大势垒为418.0kJ/mol。N2O可在焦炭表面分解释放出N2,异相分解反应为一步反应,计算所得活化能为100.8kJ/mol。N2O的异相生成和异相分解反应均为放热反应。采用经典过渡态理论计算得到了各路径中速率控制步骤的反应速率常数。低温条件下,N2O的异相分解反应速率略低于其异相生成速率,随着温度的升高,两者逐渐接近,说明高温条件有利于N2O的异相分解。  相似文献   

3.
利用密度泛函理论,研究了焦炭催化作用下CO还原NO的化学反应机理,优化得到了均相反应路径以及在Zigzag和Armchair型焦炭表面上的异相反应路径中所有驻点的几何构型与能量,并对三条反应路径进行了动力学分析。结果表明,均相NO还原反应的活化能为254.06 kJ/mol,而Zigzag型与Armchair型焦炭表面NO异相还原反应的活化能分别为86.94与52.16 kJ/mol,说明焦炭在NO还原反应中能够起到催化作用。在焦炭表面进行的CO还原NO的反应路径经历N2形成、N2释放及两步CO2释放四个阶段,最终生成一个N2分子与两个CO2分子。此外,通过对比不同路径下异相反应的能量变化与动力学参数可知,焦炭表面结构对NO还原反应特性存在较大影响;与Zigzag型焦炭表面相比,基于Armchair型焦炭表面的NO还原反应决速步能垒值更低且反应速率更快,表明在Armchair型焦炭表面上的NO还原反应更易进行。  相似文献   

4.
基于密度泛函理论的CO2氧化含氮焦炭的机理研究   总被引:1,自引:0,他引:1  
本研究基于密度泛函理论,选取简化的含吡咯氮(N-5)或吡啶氮(N-6)焦炭模型,在分子水平上对CO2氧化含氮焦炭的异相反应机理进行研究。结构优化采用B3LYP-D3/6-31G(d)方法,单点能计算采用B3LYP-D3/def2-TZVP方法。计算结果表明,CO2氧化含氮焦炭过程分为CO2吸附、CO脱附和NO脱附三个阶段。CO2异相氧化含吡咯氮焦炭的反应中,CO2分子倾向于以C-O-down模式(N-O结合、C-C结合)吸附形成含氮和氧的五元杂环结构。然后五元环中原CO2分子的C-O键断裂形成表面羰基和表面氮氧结构,分别解吸附出CO和NO。该反应吸热401.2 kJ/mol,决速步能垒为197.6 kJ/mol。CO2异相氧化含吡啶氮焦炭的反应中,CO2分子以C-O-down和C-C结合、C-O结合模式吸附后倾向于先形成含氮和氧的六元杂环,再发生CO和NO分子的脱附。该反应吸收598.6 kJ/mol的热量,决速...  相似文献   

5.
采用密度泛函理论,并使用具有周期性边界条件的石墨烯模型近似模拟焦炭表面,研究了Fe原子修饰及点缺陷对NH_3在焦炭表面异相吸附的影响。计算结果表明,NH_3分子在点缺陷石墨烯表面的吸附属于物理吸附,结合能为-0.381 e V;NH_3分子吸附在Fe修饰的完整石墨烯表面属于化学吸附,吸附能为-1.442 eV; Fe原子修饰及点缺陷单独存在下NH_3的吸附能均大于NH_3在完整石墨烯表面的吸附(吸附能为-0.190 eV)。此外,Fe原子修饰与点缺陷共存对NH_3的吸附具有协同作用,结合能达到-3.538 eV,明显大于两者单独存在下NH_3的吸附能之和,综合分析Mulliken布居数与态密度,Fe原子与石墨烯表面、NH_3分子之间有更多地电荷转移,可以解释两者共存对NH_3吸附协同促进的原因。  相似文献   

6.
碳资源在能源、材料及化工等领域的清洁高效利用日益重要,而焦炭氧化特别是脱附产生CO2/CO的机理研究并不充分。其中较高焦炭表面氧覆盖率相应于较低温度或较高压力的反应条件,对此,本研究基于第一性原理研究讨论了该情况下焦炭Zigzag结构碳环簇氧化脱附过程的反应路径。计算表明,表面吸附氧热解生成CO2过程需要经过重排形成含O-C-O团簇的结构,最终至CO2完成脱附需多个中间反应步,与对比文献中形成碳氧六元环再依次断掉两个C-O键而脱附CO2不同,本研究得到了相关的两种路径,分别为形成CO2-C-官能团再断掉C-C而脱附CO2以及基于碳氧六元环结构直接断裂两个C-O键而脱附CO2的可能反应路径。另外,研究了CO脱附过程的不同反应路径。模型计算结果与相关文献理论和实验结果具有良好的符合。  相似文献   

7.
采用密度泛函理论研究了Ca元素对焦炭表面NO吸附行为的影响。使用周期性石墨烯模型近似模拟实际焦炭表面的石墨化结构,并在石墨烯表面装饰Ca原子(按质量计Ca原子覆盖率为13.3%),考察了Ca元素对焦炭表面NO吸附的催化作用。计算结果表明,NO分子在纯净石墨烯表面的吸附属于物理吸附,结合能仅为-19.34 kJ/mol;石墨烯表面掺入Ca原子后,由于Ca原子4s轨道和3d轨道的电子转移到NO分子,结合能显著提高至-206.02 kJ/mol。  相似文献   

8.
基于密度泛函理论研究了钠对焦炭非均相还原NO的微观作用机理。计算结果表明,Na原子可以在焦炭边缘游离,最倾向于吸附在焦炭边缘穴位,释放出174.2 kJ/mol的能量。波函数分析显示,Na原子以强静电吸引的方式与边缘碳原子结合,电子由Na转移到焦炭上。NO以O临近Na原子的方式吸附在焦炭边缘最稳定。Na促进第一个NO分子的吸附,但对第二个NO分子的吸附影响不大。内禀反应坐标计算与Mayer键级分析表明非均相还原通道中Na与O之间经历"结合-分离",通过"氧化-还原"的方式影响反应的进行。N2分子的化学解吸附步是非均相还原的速控步。采用正则变分过渡态理论进行动力学分析,发现Na对速控步的活化能影响不大,但会增加焦炭上活性位点的数量,加快反应的进行。  相似文献   

9.
基于量子化学密度泛函理论(DFT),研究了碳质表面异相还原NO2的反应机理,针对Zigzag与Armchair两种碳质表面,采用M06-2X方法与6-311G (d)基组联用,优化得到了不同反应路径下所有驻点的几何构型与能量,并对各路径进行了热力学与动力学分析,重点探究了CO在NO2异相还原反应中的作用规律,同时考察了碳质表面与反应温度对异相反应的影响。计算结果表明,NO2在碳质表面的异相还原过程主要分为两个阶段,即NO2还原阶段与碳氧化物释放阶段。通过对比无CO分子参与的反应可知,参与反应的CO分子可以降低各阶段的反应能垒并且加快各阶段的反应速率;CO分子存在时,NO2还原阶段的反应能垒被降低,促进了NO2还原成NO的异相反应过程,同时参与反应的CO分子与碳质表面剩余氧原子结合,形成CO2分子并释放,使碳氧化物释放阶段的反应能垒降低,从而促进了整体还原反应的进行。此外,与Armchair型相比,基于Zigzag型碳质表面的NO2异相还原反应能垒更低且反应速率更快,说明NO2异相还原反应更容易在Zigzag型碳质表面进行。最后,由反应动力学分析可知,随着温度上升,各阶段的反应速率均增大,说明提高温度对碳质表面的NO2异相还原能够起到促进作用。  相似文献   

10.
基于密度泛函理论、结合电子结构分析和Mayer键级变化研究了钙对焦炭非均相还原NO的微观作用机理。对焦炭模型进行电子定域化函数和静电势极值点分析发现,焦炭边缘未饱和的碳原子周边表现出高的电子定域性,体系静电势最小值为-101.1 k J/mol,边缘碳活性位存在孤对电子。钙的添加可促进第一个NO分子在焦炭边缘的吸附,但对第二个NO分子的吸附影响不大。钙的添加不改变NO在焦炭边缘的非均相还原反应路径,但可将决速步的活化能由124.4 k J/mol降至91.9 k J/mol。动力学分析发现添加钙后,非均相还原反应的指前因子增大,焦炭边缘的活化位点增多,有利于加快NO非均相还原反应的进行。  相似文献   

11.
发展精确、高效的交换-关联泛函一直是密度泛函理论工作者所追求的神圣目标。传统密度泛函被证实在计算原子或分子体系的某些基态和激发态性能时存在困难,而且预测不具有普适性;另一方面,一些高水平方法如耦合簇(CC)理论和基于格林函数(G)和屏蔽库仑作用(W)近似的多体微扰理论(MBPT),尽管相对精确但往往需要消耗昂贵的计算成本,因而其研究体系的尺寸和实用性受到了很大的限制。近年来,“最优化”调控区间分离泛函的发展在一定程度上使得上述问题得到改善,尤其是在消耗较少的计算成本前提下能够达到与高水平方法相媲美的预测精度,引起了越来越多的关注。本文首先简要回顾了密度泛函领域的理论背景,在区间分离密度泛函理论的基础上,重点介绍了最优化“调控”的概念;并且结合近期的理论工作对其在实际计算时的表现进行评价;最后,就最优化“调控”方法的前景和应用进行了展望。  相似文献   

12.
密度泛函理论处理激发态与多重态结构研究进展   总被引:4,自引:1,他引:3  
戴瑛  黎乐民 《化学进展》2001,13(3):167-176
用密度泛函理论处理分子激发态和电子多重态结构是密度泛函理论发展的重要方面, 研究工作一直很活跃。本文对近年来在这一领域取得的重要进展作简要的综述。  相似文献   

13.
N掺杂石墨烯作为一种具有较高活性和稳定性的氧还原反应(ORR)催化剂,受到人们的广泛关注。然而不同的N掺杂类型对氧还原活性的影响一直存在争议。本文通过密度泛函理论分别对石墨型和吡啶型两种N掺杂石墨烯的ORR活性进行比较研究。能带结构分析表明,石墨氮掺杂石墨烯(GNG)的导电性随掺N量的增加而降低;吡啶氮掺杂石墨烯(PNG)的导电性则随掺N量的增加先提高后降低。当N掺杂浓度达到4.2%(原子分数)时,PNG具有最优导电性。且当N掺杂浓度大于1.4%时,PNG的导电率总是高于GNG。氧还原自由能阶梯曲线发现O2的质子化是整个氧还原过程的潜在控制步骤。在同等氮掺杂浓度下,O2的质子化自由能能变在GNG上低于在PNG上,意味着若在同等电子传输能力的情况下,GNG具有比PNG更优异的催化活性。进一步分析发现:当N掺杂浓度在低于2.8%时,GNG和PNG导电性差异小,其催化ORR活性由O2质子化反应难易程度决定,GNG的催化活性优于PNG;当N掺杂浓度高于2.8%时,氮掺杂石墨烯的电子传输性能(导电性)成为决定催化剂ORR活性的主要因素,因此PNG表现出较GNG更高的活性。  相似文献   

14.
夏杰桢  曹蓉  吴琪 《化学通报》2022,85(10):1224-1232
近年来,材料科学研究中密度泛函理论(DFT)计算与机器学习相结合的方法呈现爆炸式增长的趋势。本文综述了DFT及其高通量方法产生的大量计算数据与机器学习相结合的原理和意义,从DFT计算的基本原理出发,重点介绍了机器学习方法的流程、常用的算法及其在催化材料预测热门研究方向中的应用,最后剖析了这个新兴领域目前存在的研究问题、挑战以及未来的发展前景。  相似文献   

15.
用密度泛函方法分别研究了单态和三态 CH3 O·2 NO CH3 O· NO2 气相反应 .结果表明 ,反应中 NO进攻 CH3 O·2 经过了一个顺反异构化的过程 ,摘取 CH3 O·2 的端基氧 .整个反应是吸热反应 ,理论计算吸热值为 5 0 .93k J/ mol,单态为多通道多步骤反应 ,决定速度步骤的能垒为 1 90 .6 1 k J/ mol.而三态为单通道反应 ,其决定速度步骤的能垒为 1 6 3.31 k J/ mol.三态反应为最佳反应通道 .该反应的研究将为保护臭氧层及大气环境提供重要的理论依据 .  相似文献   

16.
黄酮类化合物的密度泛函理论研究   总被引:1,自引:0,他引:1  
在混合密度泛函B3LYP理论下,用6-31G*基函数研究了几种典型黄酮类化合物分子的几何结构、电子结构和分子的静电势,讨论了电子结构和分子活性部位的关系.  相似文献   

17.
本文提出以合金形成能、Pt表面偏析能和氧原子吸附能作为依据筛选具有高活性和高稳定性的表面富Pt氧还原合金催化剂. 利用DFT计算对Pt与各种过渡金属形成的合金的热力学、表面化学和电子性质进行了系统研究,在此基础上预测Pt-V,Pt-Fe,Pt-Co,Pt-Ni,Pt-Cu,Pt-Zn,Pt-Mo,Pt-W等合金可能具有好的氧还原催化活性和稳定性. 所预期的大部分催化剂已有文献研究结果支持. 另外,Pt-Zn和Pt-Mo体系目前报道尚不多,值得进一步的细致研究.  相似文献   

18.
随着高分子科学的发展,高分子的性质需要更多的理论给予解释。本文介绍了目前正在形成的密度泛函理论方法及其在高分子结构和性能研究中的应用。由于该理论处于初始阶段,有许多问题尚待研究。  相似文献   

19.
H2CO和NO2反应机理的密度泛函理论计算研究   总被引:2,自引:2,他引:2  
用密度泛函理论方法在UB3LYP/ 6-311++G(d,p)并包含零点能水平上计算得到了H2CO和NO2反应的势能面.在势能面上找到了由H2CO和NO2反应生成HCO和trans-HONO的两条反应通道.直接H迁移反应通道的势垒只有90.54 kJ*mol-1,是主要的反应通道,其TST速率是7.9 cm3*mol-1*s-1,与文献值相符;另一条通道是H2CO异构化为trans-HCOH,然后C位H迁移,最后生成的HOC分子异构化为HCO,这条通道反应势垒高达348.03 kJ*mol-1,是一条次要反应通道.  相似文献   

20.
N2O和CO都是大气污染物,过渡金属催化CO还原N2O是同时消除它们的有效方法。金属分散于或嵌入石墨烯、氮化碳等二维材料是提高催化性能的有效手段之一。结合相对论赝势,运用UPBE0方法优化了锇单原子嵌入石墨烯催化CO还原N2O循环反应路径上各驻点的几何结构、并计算了热力学函数,进而推测了该催化反应的机理。结果表明该反应存在N2O先吸附(路径a)和CO先吸附(路径b)两种反应历程。路径(a)和路径(b)的表观自由能垒ΔE分别为108.28和135.92 kJ/mol。其中(a)为优势路径,反应可以沿该路径在比较温和的条件下进行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号