首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
光照度及葡萄糖浓度对螺旋藻生长的影响   总被引:7,自引:1,他引:7  
研究光照度和葡萄糖浓度对钝顶螺旋藻光合自养及混合培养生长速率的影响.在光合自养中,钝顶螺旋藻的生长受光照度的影响,最佳的光照度约为4000lx.光照度的减少将明显降低其生长速率。如果光照度低于500lx,将观察不到其生长.在混合培养中,光照度对螺旋藻的影响不及在光合自养中显著.在2000至4000lx光照度范围内,螺旋藻的生长几乎不受影响。而且在2.5×10kg/L的葡萄糖浓度下,可获得2.66×10-3kg/L的最高干细胞质量浓度.光照度和葡萄糖浓度对钝顶螺旋藻生长的影响是相关联的:当光照度从4000lx降至500lx时,如果要获得最大的螺旋藻生长速率,葡萄糖的浓度应该从2.5×10-3kg/L增加至5.0×10-3kg/L。  相似文献   

2.
培养方法对钝顶螺旋藻生长的影响   总被引:3,自引:0,他引:3  
比较两种培养方法:静置培养(每天定时摇动4次)和摇瓶培养(往复式摇床)对钝顶螺旋藻生长的影响。实验结果表明:遥瓶培养能加速藻的生长,生长周期缩短,生长速度、生物量、叶绿素a含量均高于静置培养,摇瓶培养能维持合适的溶解氧。摇瓶培养装置易于构建,混合效果良好,不易使螺旋藻丝断裂,还可使生物量提高约22.0%。  相似文献   

3.
谷氨酸钠对钝顶螺旋藻生长及色素的影响   总被引:2,自引:0,他引:2  
在Zarrouk培养液中添加不同质量浓度的谷氨酸钠,研究其对钝顶螺旋藻生长和色素质量比的影响。结果表明,低质量浓度的谷氨酸钠能促进螺旋藻的生长,提高螺旋藻中叶绿素a、类胡萝卜素和藻蓝蛋白的质量比,而当谷氨酸钠质量浓度超过1g/L后,钝顶螺旋藻的生长和色素质量比都受到明显抑制,藻蓝蛋白也受到破坏。  相似文献   

4.
由于羟基磷灰石(Ca_(10)(PO_4)_6(OH)_2,HAP)纳米颗粒增强的镁基金属复合材料(MMCs)生物相容性和力学性能与骨骼组织非常相似,因此该材料被认为是可生物降解的备选材料。然而增强纳米颗粒的硬度较大,MMCs存在加工较为困难的问题,为了研究HAP质量分数为0.5%和1.0%的Mg/HAP MMCs微铣削加工特性,分析切屑参数对材料表面粗糙度及HAP纳米颗粒对表面形貌和切屑的影响。方差分析表明:随着HAP纳米颗粒含量的增加,主轴转速的影响减小,切削深度的影响增大。建议选择较小的每齿进给量和切削深度,以获得更好的表面粗糙度。尺寸效应的研究表明:当主轴转速和切削深度分别为40 000 r/min和100μm时,Mg/HAP MMCs的最小切屑深度为1.1μm。  相似文献   

5.
以生长纳米碳管阵列用催化剂为应用对象。采用辉光放电等离子体增强氧化还原方法制备纳(微)米Cu催化剂颗粒.采用AFM和SEM对试样表面进行分析。结果表明,当气体流量不变时,温度和氧化时间对颗粒形貌和尺寸有明显的影响,温度过低。不能获得足够的颗粒,温度过高则颗粒聚集长大;400℃为较好的温度条件。氧化5min时颗粒尺寸达到纳米量级.  相似文献   

6.
有机碳氮源对钝顶螺旋藻生长及叶绿素a含量的影响   总被引:2,自引:0,他引:2  
在Zarrouk溶液中添加不同的有机碳氮源,研究它们对钝顶螺旋藻生长及叶绿素a含量的影响。结果表明:糖类中,浓度为1.5 g.L-1葡萄糖对钝顶螺旋藻生长影响明显,平均生长速率增加了19.1%,平均世代时间减少了16.0%,其次为麦芽糖,平均生长速率增加了5.2%,平均世代时间减少了5.6%;有机酸钠盐对螺旋藻的生长影响不太明显,只有苹果酸盐对其生长有一定的促进作用。有机氮源中,只有0.2 g.L-1尿素有微弱的促长作用。添加的有机碳氮源中,苹果酸钠对螺旋藻叶绿素a含量的影响最为明显,与对照相比,螺旋藻单位藻体的叶绿素a含量提高了73.4%,葡萄糖则使单位藻体的叶绿素a含量有所下降。  相似文献   

7.
以乙酸钴为钴源,水合肼为还原剂,在不同表面活性剂下,溶剂热法制备出不同形貌的二维、三维钴微纳米颗粒。通过扫描电子显微镜(SEM)、X射线能量色散谱(EDS)和X射线衍射(XRD)对产物进行了表征。采用自制的2-十一烷基-1-二硫脲乙基咪唑啉季铵盐(SUDEI)为表面活性剂时,制备出直径400~600nm,厚度约100nm的六角盘状二维产物,采用其他表面活性剂只能制备出三维的花状钴。初步探讨了溶剂热条件下钴微纳米颗粒的构筑习性。  相似文献   

8.
编码荧光彬纳米颗粒作为一类特殊的功能颗粒,以其稳定的形态结构、均匀的粒径分布、良好的单分散性、极高的荧光量子产率和良好的界面反应性等特性,在许多领域特别是生物医学领域具有广泛的应用前景,引起了国内外众多学者的广泛关注。但是在国内研究制备技术不成熟,应用的颗粒探针多依赖进口,如何能使编码荧光影纳米颗粒国产化,将对我国生物...  相似文献   

9.
在螺旋藻大规模、开放式养殖过程中,利用碳酸氢铵对受轮虫污染危害的螺旋藻培养液进行杀虫处理。结果表明:当碳酸氢铵剂量〉150 mg/L时,螺旋藻轮虫的防治效果在24 h内可达90%以上,剂量越大杀虫效果越好,耗时越少;当碳酸氢铵剂量〉250 mg/L时,杀虫效果提高的同时对螺旋藻群体的生长也会产生不同程度的抑制和危害;当碳酸氢铵剂量〈100mg/L时,轮虫防治效果不到50%,生产实践中无应用价值。正常情况下利用碳酸氢铵进行大规模防治螺旋藻培养液轮虫时的剂量推荐为200 mg/L左右,并在条件许可时于傍晚前后施用为佳。  相似文献   

10.
通过考察水与表面活性剂的摩尔比(R),TEOS的量、氨水的量及包壳次数对基于Triton X - 100/环已烷/正已醇/水反相微乳液体系制备二氧化硅纳米颗粒尺寸的影响,开展了基于反相微乳液法的尺寸可控性二氧化硅纳米颗粒制备研究.结果表明:在其他参数都恒定的情况下,通过改变微乳液体系中上述某一组分的量,可以在一定程度上实现二氧化硅纳米颗粒的尺寸可控性合成.首先,水与表面活性剂的摩尔比(R)对二氧化硅纳米颗粒的尺寸影响最大,随着R值的增大,颗粒的粒径逐渐减小,当R值达到18时,二氧化硅纳米颗粒的形貌变得不再是很规则的球形结构,并且分散性降低,团聚现象明显;其次是氨水的量,随着氨水量的增多,颗粒的粒径先减小,之后不再发生明显变化;另外随着包壳次数的增多,颗粒的粒径随之增大,并且颗粒之间的分散性也有所提高;但是TEOS的量对颗粒粒径的影响不明显.  相似文献   

11.
大螺旋藻氨基酸成分的研究   总被引:2,自引:0,他引:2  
通过对大螺旋藻的游离氨基酸和全氨基酸的组成成分分析表明大螺旋藻有较高的氨基酸营养,全氨基酸成分与极大螺旋藻及钝顶螺旋藻的成分很相似.因此大螺旋藻与极大螺旋藻、钝顶螺旋藻同样,可被开发利用.  相似文献   

12.
用Zarrouk培养基培养钝顶螺旋藻NS-90020,从中提取DNA,然后在加热条件下,使其DNA变性,跟踪DNA的变性过程中的增色效应,得到螺旋的熔解温度(Tm),根据经验公式(C+C)%=2.44*(Tm-69.3)可以算出螺旋藻体内G,C百分质量分数,作为进一步研究螺旋藻的遗传特性及育种的基础。  相似文献   

13.
螺旋藻对铁的富集作用研究   总被引:3,自引:0,他引:3  
研究螺旋藻的富铁规律和如何提高螺旋藻有机铁比率及含量,从而为更好地利用开发螺旋藻这一宝贵的生物资源提供依据。研究结果表明,螺旋藻对铁离子具有较强烈的吸附和密集作用,藻体中有机铁含量较高,最低可达284ppm,最高可达349ppm;螺旋藻培养过程中应适当给予添加剂以增加培养基中的铁离子浓度,如0.01—0.03gm/L,可望有效增加螺旋藻中有机铁含量。  相似文献   

14.
用螺旋藻为新食物源,以液态深层发酵法来生产高营养价值的食醋,确定了螺旋藻浓缩提取液的添加量为总发酵液量的10%  相似文献   

15.
研究了在4种pH值环境中对螺旋藻细胞酶促水解的结果.以水解液中的水溶性蛋白质含量和全氮量为指标,初步确定了酶促水解提取螺旋藻细胞内营养物质的适宜的工艺条件,包括使用的酶制剂、加酶量、pH值、加热温度和作用时间等  相似文献   

16.
螺旋藻蛋白质提取工艺研究   总被引:4,自引:0,他引:4       下载免费PDF全文
以钝顶螺旋藻粉为原料, 经复水、胶磨、均质、浸提, 及等电点法, 提取其中的蛋白质,同时研制出钝顶螺旋藻蛋白质提取工艺条件, 使产品的蛋白质含量达89-8 % . 蛋白质的提取率达98 % .  相似文献   

17.
云南程海螺旋藻养殖池中细菌研究   总被引:3,自引:0,他引:3  
对程海螺旋藻玻璃温室-半封闭跑道式循环环境池中的细菌进行了研究,结果发现,细菌总数通常为10^4-10^7个/mL,并且随培养时间呈一定规律性波动;池子报废与细菌总有一定关系,与藻种抗逆性及水环境的富营养化关系更大;经鉴定,优势菌为奈瑟氏球菌属(Neisseria)、葡萄球菌属(Staphylococcus)微球菌属 (Micrococcus)、肠杆菌科(Enterobacteriaceae)等;少数菌株能明显抑制或促进螺旋藻生长,主要是通过其代谢产物作用于藻体;对5株菌有明,其最适生长温度为37℃或25-37℃,PH7-9,与程海水环境相适应。  相似文献   

18.
以钝顶螺旋藻为实验材料,以无毒加富的1/10浓度的氮肥厂废水为基本培养液,并加入 4.2g/LNaHCO3和0.25g/KHCO3两种营养盐,结果螺旋藻生长良好,此加入量仅为Zarrouk培养其中NaHCO3量的1/4和K2HPO4量的1/2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号