首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We study a wavepacket tunneling in one‐dimensional periodically driven double‐well system using entangled trajectory molecular dynamics method. The tunneling dynamics dependents on the amplitude and frequency of the driven force are present. Both resonant and nonresonant tunneling process are enhanced by the driven force when the system is chaotic under classical dynamics. We give entangled trajectory in phase space compared to corresponding classical trajectory with same initial state to visually show quantum tunneling process. The average values of quantum tunneling probability after long time evolution have been shown in the parameter spaces, the effect of resonance and chaos on the tunneling dynamics are present. The relation between chaos and the uncertainly product is discussed in the end. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
This study employs mixed quantum-classical dynamics (MQCD) formalism to evaluate the linear electronic dipole moment time correlation function (DMTCF) in which a Morse oscillator serves to model the associated vibrations in a mixed quantum-classical (MQC) environment. While the main purpose of this work is to study the applicability of MQCD formalism to anharmonic systems in condensed phase, approximate schemes to physically evaluate the mathematically divergent integrals have been developed in order to deal with the essential singularities that arise while evaluating the Morse oscillator canonical partition function and the DMTCF in MQC systems in the classical limit. The motivation for numerically and analytically evaluating these divergent integrals is that a partition function of any system should lead to a finite value at any temperature and therefore this divergence is unphysical. Additionally, since a partition function is to signify the number of accessible states to the system at hand, divergent results are not physically acceptable. As such, straightforward approximate analytic expressions, at different levels of rigor, for both the classical Morse oscillator partition function and the DMTCF in MQC systems are derived, for the first time. Calculations of Morse oscillator partition function values using different approaches at various temperatures for CO, HCl, and I(2) molecules, showing good results, are presented to test the expressions derived herein. It is found that this divergence, due to singularity, diminishes upon lowering the temperature and only arises at high temperatures. The gradual diminishing of the singularity upon lowering the temperature is sensible since the Morse potential fits the parabolic potential at low temperatures. Model calculations and discussion of the DMTCF and linear absorption spectra in MQC systems using the molecular constants of CO molecule are provided. The linear absorption lineshape is derived by two methods, one of which is asymptotic expansion.  相似文献   

5.
6.
7.
Mixed quantum-classical dynamics simulations at the multireference configuration interaction (MR-CIS) level were performed for 9 H-adenine in order to understand its ultrafast nonradiative decay process. Dynamics simulations were also performed for the model system 6-aminopyrimidine. MR-CIS and complete active space perturbation theory (CASPT2) have been employed to characterize a large variety of qualitatively different conical intersections, the branches of the crossing seam connecting them, and the reaction paths from the Franck-Condon region for 9 H-adenine. The results show a two-step process consisting of ultrashort deactivation from S 3 to S 1 and a longer exponential decay step corresponding to the conversion from S 1 to S 0.  相似文献   

8.
An umbrella sampling approach based on the vibrational energy gap is presented and examined for exploring the reaction coordinate for a proton transfer (PT) reaction. The technique exploits the fact that for a PT reaction the energy gap between the vibrational ground and excited states of the transferring proton reaches a minimum at the transition state. Umbrella sampling is used within mixed quantum-classical simulations to identify the transition state configurations and explore the reaction free energy curve and vibrationally nonadiabatic coupling. The method is illustrated by application to a model phenol-amine proton transfer reaction complex in a nanoconfined solvent. The results from this new umbrella sampling approach are consistent with those obtained from previous umbrella sampling calculations based on a collective solvent coordinate. This sampling approach further provides insight into the vibrationally nonadiabatic coupling for the proton transfer reaction and has potential for simulating vibrational spectra of PT reaction complexes in solution.  相似文献   

9.
An umbrella sampling approach for vibrational frequency line shifts is presented. The technique allows for efficient sampling of the solvent configurations corresponding to frequency shifts of a solute in mixed quantum-classical simulations. The approach is generally applicable and can also be used within traditional perturbation theory calculations of frequency shifts. It is particularly useful in the extraction of detailed mechanistic information about the solute-solvent interactions giving rise to the frequency shifts. The method is illustrated by application to the simple I2 in a liquid Xe system, and the advantages are discussed.  相似文献   

10.
We have used the time-dependent discrete variable representation (TDDVR) method to simulate the photoabsorption spectrum of pyrazine. The time-dependent molecular dynamics of pyrazine after excitation to the S2 electronic state is considered as a benchmark to investigate the S2 absorption spectrum. We have carried out the dynamics on a basic four-mode model of pyrazine with the inclusion of five major modes as well as the rest of the vibrational modes as bath modes. Investigations reveal the effect of bath modes such as energy and population transfer from the subsystem to the bath. Calculated results demonstrate excellent agreement with traditional quantum-mechanical findings during the entire propagation and converge to the exact quantum results when enough gridpoints are used. It appears that TDDVR, as a numerical quantum dynamics methodology, is a good compromise between accuracy and speed.  相似文献   

11.
12.
We analytically derive a correlated approach for a mixed semiclassical many particle dynamics, treating a fraction of the degrees of freedom by the multitrajectory semiclassical initial value method of Herman and Kluk [Chem. Phys. 91, 27 (1984)] while approximately treating the dynamics of the remaining degrees of freedom with fixed initial phase space variables, analogously to the thawed Gaussian wave packet dynamics of Heller [J. Chem. Phys. 62, 1544 (1975)]. A first application of this hybrid approach to the well studied Secrest-Johnson [J. Chem. Phys. 45, 4556 (1966)] model of atom-diatomic collisions is promising. Results close to the quantum ones for correlation functions as well as scattering probabilities could be gained with considerably reduced numerical effort as compared to the full semiclassical Herman-Kluk approach. Furthermore, the harmonic nature of the different degrees of freedom can be determined a posteriori by comparing results with and without the additional approximation.  相似文献   

13.
A model of double proton tunneling in formic acid dimer is developed using a reaction surface Hamiltonian. The surface includes the symmetric OH stretch plus the in-plane stretch and bend interdimer vibrations. The surface Hamiltonian is coupled to a bath of five A1g and B3g normal modes obtained at the D2h transition state structure. Eigenstates are calculated using Davidson and block-Davidson iterative methods. Strong mode specific effects are found in the tunneling splittings for the reaction surface, where splittings are enhanced upon excitation of the interdimer bend motion. The results are interpreted within the framework of a diabatic representation of reaction surface modes. The splitting patterns observed for the reaction surface eigenstates are only slightly modified upon coupling to the bath states. Splitting patterns for the bath states are also determined. It is found that predicting these splittings is greatly complicated by subtle mixings with the inter-dimer bend states.  相似文献   

14.
A model is presented to decribe proton transfer between two sites of a hydrogen bond forming part of a larger molecular complex in a thermal environment. The tunneling motion of the proton is assumed to couple strongly to the end atom vibration of the hydrogen bond via an interaction of the small polaron type. The end atom vibration interacts with the remaining vibrations of the molecular complex and the surrounding medium. These degrees of freedom are treated as an ensemble of harmonic oscillators forming a heat bath and therefore giving rise to a random force acting on, and a damping of, the end atom vibration. Via this vibration the tunneling motion of the proton is damped, too, thus describing an effective transfer from one site to another. The rate coefficient for the transfer reaction is calculated according to Kubo's theor, as an integral over the time correlation function of the reactive flux. Both the end atom vibration and the heat both have an influence on the reaction rate, which therefore depends on both types of coupling constants. The rate constant for systems like a hydrogen bond between two oxygen atoms is not directly related to the tunneling frequency, but may show resonance features when the oscillator frequency is comparable to the level splitting of the two lowest lying proton states.  相似文献   

15.
16.
An ab initio molecular dynamics approach is combined with the semiclassical tunneling method of Makri and Miller, which is applied to estimations of tunneling splitting in the umbrella inversion of ammonia and the intramolecular hydrogen transfer in malonaldehyde. In the application to malonaldehyde, effects of multidimensionality are examined by assigning quantum zero-point energies only to significant vibrational modes and changing the amount of energy given to other degrees of freedom. The calculated tunneling splitting values are in good agreement with the corresponding experimental values for both molecules.  相似文献   

17.
We have simulated the photodynamics of azobenzene by means of the Surface Hopping method. We have considered both the trans → cis and the cis → trans processes, caused by excitation in the n → π* band (S(1) state). To bring out the solvent effects on the excited state dynamics, we have run simulations in four different environments: in vacuo, in n-hexane, in methanol, and in ethylene glycol. Our simulations reproduce very well the measured quantum yields and the time dependence of the intensity and anisotropy of the transient fluorescence. Both the photoisomerization and the S(1) → S(0) internal conversion require the torsion of the N═N double bond, but the N-C bond rotations and the NNC bending vibrations also play a role. In the trans → cis photoconversion the N═N torsional motion and the excited state decay are delayed by increasing the solvent viscosity, while the cis → trans processes are less affected. The analysis of the simulation results allows the experimental observations to be explained in detail, and in particular the counterintuitive increase of the trans → cis quantum yield with viscosity, as well as the relationship between the excited state dynamics and the solvent effects on the fluorescence lifetimes and depolarization.  相似文献   

18.
The semiclassical tunneling method is applied to evaluate the tunneling splitting of tropolone due to the intramolecular proton transfer in the electronic excited state, first time, in a framework of the trajectory on-the-fly molecular dynamics (TOF-MD) approach. To prevent unphysical zero-point vibrational energy transfer among the normal modes of vibration, quantum zero-point vibrational energies are assigned only to the vibrational modes related to intramolecular proton transfer, whereas the remaining modes are treated as bath modes. Practical ways to determine the tunnel-initiating points and tunneling path are introduced. It is shown that the tunneling splitting decreases as the bath-mode energy increases. The experimental tunneling splitting value is well reproduced by the present TOF-MD approach based on the Wentzel-Kramers-Brillouin (WKB) approximation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号