首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermally stimulated polarization (TSP) and depolarization (TSD) experiments have been performed with two grades of polypropylene and some respective CaCO3-filled composites containing small amounts of nonionic surfactant (0–2 wt%). The effects of electrode blocking, electrode materials on the thermally stimulated currents, and reproducibility of the measurements have been studied. The effect of water vapor adsorbed from the ambient air on the AC dielectric properties and on the thermally stimulated polarization behavior has been determined.The addition of either CaCO3 or surfactant to PP decreases the intensity of the c depolarization current peak in the pre-melting region, while the presence of both components increases the current. Partial discharges are present in poly propylene/CaCO3 composites under high voltages if neither water vapor nor a coherent surfactant layer is present at the matrix/filler interface.A short literature survey is presented on the TSC studies of polyolefins and their composites, and various mechanisms responsible for the observed changes are discussed, including interfacial polarization, trap redistribution through nucleation, and oriented adsorption.  相似文献   

2.
The complex dielectric constant of a composite with an interlayer was studied as a function of the volume fractions and the properties of the filler, the interlayer, and the matrix. The theoretical approach is analogous to the calculation of the shear modulus, the bulk modulus, and the termal expansivity of particulate filled polymers using the interlayer model (IM).An analytical expression describing the influence of an interlayer on the generalized dielectric constant of the composite as a function of the volume fraction and interlayer properties is derived.In the case of a composite with non-conductive constituents, the equations for static and oscillatory electric fields are similar. When conductive constituents are present, the complex dielectric constants have to be replaced by the generalized complex dielectric constants.For a composite of non-conductive materials, without interlayer, the obtained relation reduces to the classical Rayleigh equation. In the case of a composite with conductive constituents, also without interlayer, the complete solution of Wagner's theory is found. Special attention has been paid to the case of a water interlayer in a glass-bead filled non-conductive matrix material.  相似文献   

3.
The stress relaxation and creep behavior of unfilled high density polyethylene (HDPE) and HDPE filled with untreated and surface-treated glass spheres were measured at room temperature. A silane-based coupling agent capable of providing a covalent bond between HDPE and the glass spheres was used for the surface-treatment. Two different amounts of the coupling agent were employed giving silane layers on the fillers with different thicknesses. The effect of ageing time at room temperature on the viscoelastic properties after quenching from 100 °C to room temperature in ice water was also investigated. The effects of the surface treatment of the fillers and the ageing time was characterized by means of the internal stress ( i ) concept. The i -value increased with the degree of interaction of the filler/matrix interface and the ageing time. It was here not possible to superimpose the different flow curves with regard to the ageing time with sufficient accuracy. This is due to the variation of i with ageing time. The surface-treatment of the filler had a marked effect on the creep behavior at high applied stress levels and on the ageing behavior of the composites, presumably due to the formation of an interphase region close to the filler surface with different properties and different ageing characteristics than that of the bulk of the matrix.  相似文献   

4.
The capacitance and the dielectric loss tangents of CaCO3 filled polyethylene composites were studied. Composite samples, prepared by polymerizing ethylene on the surfaces of fillers, pre-treated by polymerization catalysts, were compared to normal mechanical mixtures. Dielectric dispersion,, and loss, , proved to be sensitive to heating or vacuum treatment. Investigation of samples under conditions of different relative humidities showed that the dielectric dispersion is due to adsorbed water. Both and increased with decreasing frequency and the ratio of loss and dispersion was nearly constant. Dielectric data measured at different relative humidities could be represented by a single Cole-Cole plot. Samples soaked in water for different periods yielded qualitatively similar but quantitatively different Cole-Cole plots. Composite samples showed higher losses at similar humidities.Possible interpretations in terms of a molecular relaxation model, an interfacial relaxation model, including a charged double layer mechanism, percolation theory and the universal response theory were examined, but none was able to fully explain the observed phenomena.  相似文献   

5.
Thermoplastic polyurethane composites with an excellent dielectric constant and high thermal conductivity were obtained using CNT@BaTiO3 as a filler through a low-speed melt extrusion method. Before preparing the hybrid filler for the composite, the filler particles were surface modified to ensure that the outer surfaces could facilitate the reaction among particles to form the hybrid and ensure complete dispersion in the thermoplastic polyurethane matrix. After confirming the proper surface treatment of the filler particles using infrared spectroscopy, thermal degradation analysis and field emission scanning electron microscopy, they were used to prepare the composite materials at a processing temperature of 200 °C. The thermal stability, thermomechanical properties, mechanical properties, thermal conductivity, and dielectric properties of the composites were investigated. Compared to the neat thermoplastic polyurethane matrix, the prepared composite exhibited a higher thermal stability, approximately 300% higher storage modulus, higher tensile strength and elongation at break values, approximately three times higher thermal conductivity (improved from 0.19 W/(m.K) to 0.38 W/(m.K), and approximately five times larger dielectric constant at high frequencies (at 1 MHz a dielectric constant of 19.2 was obtained).  相似文献   

6.
Mixtures composed of amides and electrolytes exhibit interesting properties such as viscoelastic behaviour and a megavalue of the dielectric constant. In order to improve the dielectric properties, the authors are investigating a large number of molten mixtures of CF3COONa with different types of amides, including the ternary system sodium trifluoroacetate-chloroacetamide-acetamide. The experimental measurements showed that the ternary mixtures are thermally unstable. A yellow oily product is formed; this was purified and tested by means of IR and NMR techniques. The formula and the kinetic mechanism are proposed.  相似文献   

7.
不同结构颗粒对PMMA基复合材料性能影响   总被引:1,自引:0,他引:1  
采用原位本体聚合法制备PMMA/MCM-41(with template),PMMA/SBA-15(with template),PMMA/SiO2三种复合材料.研究了介孔分子筛MCM-41,SBA-15和SiO2对PMMA复合材料拉伸强度,冲击强度,热稳定性的影响.由于合成介孔分子筛MCM-41,SBA-15时所用的模板剂CTAB和P123分布于孔口处和颗粒表面上,分别与PMMA基体产生物理缠结作用,增加了两者的相容性;且P123(EO20PO70EO20)表面有较大的PO/EO比率,与小分子量的CTAB相比有较强的疏水性,使得PMMA/SBA-15(with template)复合材料的性能要优于PMMA/MCM-41(with template).  相似文献   

8.
States of disperse silicate systems classified according to their fundamental morphological types were represented by a ternary diagram. Water vapor equilibria of various silicate samples were investigated by energy levels, by equivalent pore number of potential bands determined from adsorption potential curves. The silicate adsorbents were characterized by adsorption energy, equipotential surface area and specific capillary. Electrical properties of adsorbents depending on their water contents were examined. Changes of adsorption properties of mechanical, thermal and by ion exchange treated silicates were observed. Electrical properties of adsorbents depending on their humidity were examined. Capillary reactions were observed causing irreversible adsorption-desorption cycles.  相似文献   

9.
Poly(methyl methacrylate)/α-Fe2O3 composites were prepared by in situ bulk radical polymerization of methyl methacrylate in the presence of the cubic α-Fe2O3 particles using 2,2′-azobisisobutyronitrile as initiator. The cubic α-Fe2O3 particles were synthesized by forced hydrolysis of FeCl3 and characterized by X-ray diffraction analysis and transmission electron microscopy. The molar masses and molar mass distribution of synthesized PMMA samples were determined by gel permeation chromatography. The influence of α-Fe2O3 filler particles on the thermal properties of the PMMA matrix was investigated using thermogravimetry and differential scanning calorimetry. The molar mass and polydispersity of PMMA extracted from composite samples were not influenced by cubic α-Fe2O3 particles. The obtained composites have better thermal and thermooxidative stability than pure PMMA. On the other hand, the values of the glass transition temperature of composite samples were identical to the glass transition temperature of pure PMMA.  相似文献   

10.
Uniaxially stretched samples of PMMA were investigated by Brillouin Spectroscopy (BS). From the velocity of hypersound we could determine most of the elastic constants. Using a recently developed analysis [1] it is demonstrated that the properties of this polymer can be well described by the aggregate model. This result offers the possibility of mapping the mechanical properties by birefringence measurements. The dependence of the fourth momentP 4 on the second momentP 2 is identical with that determined for PC [2] and follows, in the measured range, that of an affine orientational state. Nevertheless, the dependence on the stretching ratio differs for different molecular weights. Thus the partition of the deformation into an orientational and an elongational contribution, as has been proposed [3], seems to be well founded.The partition depends on the stretching conditions.  相似文献   

11.
Several copolymers of acrylonitrile with butadiene (different acrylonitrile content, different molecular weight), uncrosslinked and crosslinked by tetramethylthiuramdisulfide or radiation, are investigated by dynamic mechanical measurements (10–4 Hz to 100 Hz). The viscoelastic behaviour at very low frequencies is strongly influenced by molecular weight and crosslinking whereas the main relaxation (glass process) remains nearly the same. Stress strain curves (Mullins effect) and some dielectric measurements are also reported.  相似文献   

12.
Neutron-scattering studies at small angles are performed on dilute dispersions of small, polydisperse silica spheres coated with polyisobutene in mixtures of h12 and d12-cyclohexane. The contrast variation method is applied to reveal the internal structure of the compound particles. For a detailed interpretation of the scattering curves, it is assumed that the particles consist of spherical silica cores with concentric PIB-layers into which solvent molecules can penetrate. Also the polydispersity of the particle cores is taken into account. Model calculations fit the experimental curves fairly well except for the curves near the matching point, and at higher wavevectors, where experimental errors are relatively large due to the smallness of the scattering of the particles compared to that of the background.  相似文献   

13.
The effect of the coating of the fiber on the stiffness and toughness of composite materials is presented in this paper. The type of composite material considered is of a macroscopically isotropic composite medium containing coated fibers. The models used to simulate such materials consists of: the cylindrical fiber, a cylindrical annulus of the coating, an annulus of the matrix enveloped by an infinite region of an equivalent composite consisting of a transversely isotropic material and representing the real composite with dispersed coated fibers. Solutions for the longitudinal, transverse and shear elastic moduli in the four-phase model were established assuming linear elastic conditions. The results were found to depend on the extent and the mechanical properties of the coating. The stiffness and toughness of the composite were evaluated in models representing plane-stress equatorial sections of the representative volume element of the real material according to the Hashin-Rosen model. The stiffness of the fiber composites was studied by varying the rigidity and the extent of the fiber-coating in the model and evaluating its influence on the overall mechanical behavior of the model. On the other hand, the toughness of the composite was evaluated by the method of caustics in models made of composite PMMA plates with PMMA inclusions coated with a ductile annulus. Interesting results were derived concerning the influence of the soft annulus on the mechanical behavior of the composite.  相似文献   

14.
Many cationic surfactants form, in the presence of certain organic acids, large supramolecular micellar structures in water. The dielectric response of one such system (cetyl trimethyl ammonium bromide-salicylic acid, CTMAS) has been studied as a function of frequency, concentration and temperature. The results are compared with dynamic mechanical data on the same system, which has been published in the literature.The dielectric response shows that the micelles form a rigid, open network structure, which does not impede ionic transport in the bulk liquid. However, the response also shows the presence of a frequency dispersive barrier capacitance. From the variation of the properties of this capacitance with CTMAS concentration and applied voltage over a range of frequencies, it is deduced that the barrier originates in an ordered micelle structure at each electrode.  相似文献   

15.
Dielectric properties of four recently formulated room temperature multi-component liquid crystalline mixtures with paraelectric (SmA*), ferroelectric (SmC*) and antiferroelectric (SmC*A) phases have been studied as a function of temperature and frequency. Under planer anchoring condition, dielectric spectroscopy revealed all the characteristic modes: low frequency PL and high frequency PH mode in SmC*A phase, Goldstone mode (GM) in SmC* phase and soft mode (SM) in SmA* phase. Dielectric behaviour has also been studied under the application of DC bias electric field. With bias electric field, we have been able to study the soft mode dielectric behaviour in the SmC* phase. An unknown high frequency mode (X-mode) with and without bias is also observed in SmC* phase. Dielectric results are explained in the light of generalised Landau theory. The mixtures show very high soft mode electroclinic coefficient in the SmA* phase in addition to fast switching in SmC*A and SmC* phases [30].  相似文献   

16.
Dielectric polymers with high thermal conductivity are very promising in the fields of aerospace and electronic device packaging. However, composites with excellent dielectric properties usually have low thermal conductivity. It is usually to fill the polymer with thermal conductivity particles to improve the thermal conductivity, but the high content of filler often reduces the mechanical properties of the polymer. In this paper, the traditional insulating polymer epoxy resin was used as the matrix, by covering the surface of silicon carbide with graphene to form a core-shell structure and co-filled with nano diamonds to achieve the preparation of high-performance epoxy resin at low content. The results showed that at the filling content of 30 wt%, the thermal conductivity of epoxy nanocomposites showed a dramatic thermal conductivity enhancement of 1263%, the energy storage modulus increased by 1.1 GPa, and the dielectric loss remained unchanged at 50 Hz. The advantages of the composite are the structural design and surface modification of the filler, which not only take advantage of its inherent advantages, but also improve the interface area with the epoxy matrix. The composite materials with excellent properties are expected to provide theoretical guidance for the application of high thermal conductivity dielectric materials.  相似文献   

17.
A theoretical interlayer model (IL) has been developed for the complex dielectric constant of a composite in which the filler particles are enveloped with a layer of interfacial material. The filler particles can be of any ellipsoidal shape. Special cases such as spherical particles, needles, and fabrics are shown to be covered by the model.The analytical formula as derived describes the composite properties as a function of the volume fractions of the filler, the layer and the matrix material, their dielectric properties and the filler particle shape factor.In the case of a two-phase composite the model reduces to the well-known Sillars relation for the complex dielectric constant of composite which contains filler particles of ellipsoidal shape.The effect of an interfacial layer on the static dielectric constant of the composite is discussed using the model. Next, the special case of a conductive interfacial layer in an otherwise non-conductive composite is discussed; it illustrates the effect of interfacially adsorbed water on the electrical properties of composites. Some practical examples are shown.  相似文献   

18.
Analysis of literature data on the flow of polymeric and oligomeric compositions as well as on systems of low viscous dispersion media containing a high-disperse filler (carbon black, silica, high-disperse chalk) has been carried out. As the basic idea, a proposal is made that their viscosity anomaly is due not to the matrix viscosity anomaly, but to the gradual breakdown of the filler structural skeleton with increasing shear stress and shear rate . The viscosity anomaly of those compositions is determined by the zeroshear but not by the apparent matrix viscosity. A general relationship has been found to describe the flow of such systems depending on the zero-shear matrix viscosity values, 0, their yield stress, y , and filler volume concentration , whereK=4.9 andn=0.69 are constants.  相似文献   

19.
In the present work a series of poly(vinylidene fluoride)/BiFeO3/poly(ethylene glycol) composite films were prepared by solvent casting method with poly(vinylidene fluoride) as polymer matrix, bismuth ferrite as ceramic filler and poly(ethylene glycol) as binding agent as well as enhancer. The structural analysis of the composite films by X-ray diffraction confirms that the composites have a distorted rhombohedral structure. The micro-structural analysis shows that the use of poly(ethylene glycol)in the composite films enhances the homogeneity as well as compatibility of BiFeO3 particles within the poly(vinylidene fluoride) matrix. The dielectric and electrical study done by impedance analyzer reveals that with an increase in poly(ethylene glycol) concentration, there is a subsequent increase in dielectric constant as well as AC electrical conductivity. Finally, the ferroelectric behavior of the composite confirms that the ferroelectric properties of the composites are enhanced by the addition of BiFeO3 with an increase in poly(ethylene glycol) concentrations. These preliminary results give an idea for possible applications of this type of composites in the field of electronic applications.  相似文献   

20.
CoFe2O4/TiO2 magnetic composite films were prepared using the sol-gel method with tetrabutyltitanate and metallic chlorates as starting materials. The effects of heat treatment temperatures on microstructures and on magnetic properties were studied. The microstructure and properties of the samples at different heat treatment temperatures were characterized by X-ray diffraction, Raman spectrum, scanning electron microscopy, polarized microscopy and vibrating sample magnetometry. The results show that crystals of different substances grow up independently. Cobalt ferrite is evenly embedded into the titanium dioxide matrix in the prepared composite films. The magnetism of the composite films is enhanced with an increase of the heat temperature. Supported by the National Natural Science Foundation of China (Grant Nos. 50632030 and 10474077), and the Natural Science Foundation of Shaanxi Province (Grant No. 2006E135)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号