首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have synthesized CdSe nanocrystals (NCs) possessing a trioctylphosphine surface passivation layer and modified with amphiphilic molecules to form a surface bilayer. The NCs covered with single amphiphiles are not stable in aqueous solution, but a mixed amphiphilic system is shown to provide stability in solution over several months. The solutions of the modified NCs were characterized by UV-Vis absorbance, photoluminescence, and transmission electron microscopy. An electrophoretic study revealed two operational modes. The first relies on the enrichment of NCs using a micellar plug as a tool. The accumulation of NCs at the plug-electrolyte buffer interface results in a sharp peak. By controlling the electrophoretic conditions, nanocrystals were forced to exit a micellar plug into an electrolyte buffer. We conclude that a system consisting of modified nanocrystals and a micellar plug can act as a mixed pseudomicellar system, where modified nanocrystals play the role of pseudomicelles.FigureElectrophoretic focusing of amphiphile coated CdSe nanocrystals using a micellar plug. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00604-011-0727-8) contains supplementary material, which is available to authorized users.  相似文献   

2.
The CdSe quantum dots (QDs) with bidentate ligands: a-diimine (NN) and dihydrolipoic acid (DHLA) were synthesized and characterized by UV-Vis, particle size and capillary electrophoretic techniques. Two systems were analyzed: CdSe with one ligand (CdSe/ligand) and CdSe with two different ligands (CdSe//ligand1/ligand2), where ligand = α-diimine or DHLA. Hydrodynamic features of functionalized QDs were characterized by zone capillary electrophoretic (CZE), and particle size techniques and these methods were consistent. It was established that CZE, micellar (MEKC) and microemulsion (MEEKC) modes were suitable for separating charged CdSe QDs and that no peaks were obtained for QDs passivated with electrically neutral ligands. For CdSe QDs with neutral (NN) ligands, a preconcentration method with the use of a micellar plug was introduced for visualizing these QDs. A sharp peak representing neutral QDs was obtained within the zone of micellar plug of a non-ionic surfactant, Here, a ligand character used for CdSe modification and the type of the electrophoretic method applied were the determining factors for the QDs peak visualization. Moreover, examples of visualization of charged and neutral QDs on the same run were presented, and for this purpose, dual mechanism (separation/preconcentration) was proposed.   相似文献   

3.
In the present work comprehensive studies on electrophoretic effects induced by a phase of mixed micelles, that migrates surrounded with background electrolyte (BGE) and is denoted as the BGE/segment of mixed micelles/BGE system, were undertaken using capillary electrophoresis coupled with contactless conductivity or UV–vis detector. It was established that mixed micelles under electrophoresis are subject of evolution in terms of mobility, peak area and presence of sub-zones enforced by the composition of micellar phase, segment length and applied voltage. Established features allowed us to explain the electrophoretic behavior of nanoparticles in the system BGE/sample containing nanocrystals/segment of mixed micelles/BGE and it was postulated that a pseudomicellar state of nanoparticles can be useful term in analyzing the migration phenomena of nanoparticles within micellar environment. In contrast to the previous works, where transport of nanocrystals (NCs) within micellar segment or between two micellar segments was analyzed, the present work is focused on the transport of NCs from sample of NCs dispersed in BGE to phase of mixed micelles, i.e., to rear boundary between micellar zone and BGE. Based on these results, systematic studies on transport efficiency for nanoparticles in the system BGE/sample containing nanocrystals/segment of mixed micelles/BGE show that the system assures efficient transport of nanoparticles from BGE based sample to micellar phase and their efficient preconcentration at the micellar segment/BGE rear boundary.  相似文献   

4.
The direction of the effective electrophoretic mobility of small organic cations in micellar electrokinetic chromatography using sodium dodecyl sulphate in a low-pH electrolyte can be reversed in the presence of organic solvent. This effective electrophoretic mobility change is presented here as a new dimension for on-line sample preconcentration of cations in capillary zone electrophoresis (CZE) using a background solution (BGS) modified by an organic solvent. The sample is prepared in a micellar solution without organic solvent. The focusing effect relies on the reversal in the effective electrophoretic mobility at the boundary zone between the micellar matrix and the BGS modified with organic solvent. This on-line sample preconcentration technique, called micelle to solvent stacking (MSS) afforded more than an order of magnitude improvement in concentration sensitivity compared to typical CZE-UV or CZE-electrospray ionization (ESI) MS analysis. The calculated limit of detection (S/N = 3) for pindolol and metoprolol analysed by MSS-CZE-ESI-MS was found to be 0.03 and 0.01 μg/mL, respectively.  相似文献   

5.
Converting colloidal nanocrystals (NCs) into devices for various applications is facilitated by designing and controlling their surface properties. One key strategy for tailoring surface properties is thus to choose tailored surface ligands. In that context, amines have been universally used, with the goal to improve NCs synthesis, processing and performances. However, understanding the nature of surface sites in amine-capped NCs remains challenging, due to the complex surface compositions as well as surface ligands dynamic. Here, we investigate both surface sites and amine ligation in CdSe NCs by combining advanced NMR spectroscopy and computational modelling. Notably, dynamic nuclear polarization (DNP) enhanced 113Cd and 77Se 1D NMR helps to identify both bulk and surface sites of NCs, while 113Cd 2D NMR spectroscopy enables to resolve amines terminated sites on both Se-rich and nonpolar surfaces. In addition to directly bonding to surface sites, amines are shown to also interact through hydrogen-bonding with absorbed water as revealed by 15N NMR, augmented with computations. The characterization methodology developed for this work provides unique molecular-level insight into the surface sites of a range of amine-capped CdSe NCs, and paves the way to identify structure-function relationships and rational approaches towards colloidal NCs with tailored properties.  相似文献   

6.
We have synthesized CdSe nanocrystals (NCs) in sizes from 2.2 to 5.1 nm passivated with hydrophobic trioctylphosphine oxide (TOPO) in combination trioctylphosphine (TOP) or tributylphosphine (TBP) to obtain particles of the type CdSe/TOPO/TOP or CdSe/TOPO/TBP. These NCs were then dispersed in aqueous solution of ionic or non-ionic surfactants (such as stearate, oleic acid, Tween) using a biphase (water and chloroform or hexane) transfer method. It is found that both the structure of the surfactant and the native surface of the ligand govern the coating of the NCs with surfactants. More specifically, the hydrophobicity-hydrophilicity balance of the surfactant regulates the coating efficacy, thereby transferring the NC from the organic to the aqueous phase. The type of ligand on the NCs and the kind of coating surfactant also affect photoluminescence (PL). The ratio of PL and absorbance unit (defined as PL per 0.1 AU) was implemented as a tool to monitor changes in PL intensity and wavelength as a function of size, coatings and surface defects. Finally, the distribution of CdSe nanocrystals between pseudophases in cloud point extraction was discussed based on experimental results. It was concluded that the size of CdSe nanocrystal present in an appropriate pseudophase is correlated with the way in which the non-ionic surfactant coats CdSe nanocrystals.
Figure
Coating of CdSe semiconductor nanocrystals with surfactants impacts nanocrystals’ spectral features. Absorbance of first exciton absorption band was used to estimate ability of surfactant to disperse CdSe nanocrystals. Photoluminescence (PL) intensity and position of PL band were analysed in terms of nanocrystal’s surface phenomena via surfactants applied for coating.  相似文献   

7.
We report an efficient approach to assemble a variety of electrostatically stabilized all‐inorganic semiconductor nanocrystals (NCs) by their linking with appropriate ions into multibranched gel networks. These all‐inorganic non‐ordered 3D assemblies benefit from strong interparticle coupling, which facilitates charge transport between the NCs with diverse morphologies, compositions, sizes, and functional capping ligands. Moreover, the resulting dry gels (aerogels) are highly porous monolithic structures, which preserve the quantum confinement of their building blocks. The inorganic semiconductor aerogel made of 4.5 nm CdSe colloidal NCs capped with I? ions and bridged with Cd2+ ions had a large surface area of 146 m2 g?1.  相似文献   

8.
We report effects of various organic and inorganic ligands on optical properties of CdSe nanocrystals (NCs) by changes in their photoluminescence and absorbance spectra. Surface ligand loss occurring during dilution and purification of solutions of CdSe NCs leads to a decrease of photoluminescence intensity. The complex of trioctylphosphine with Se atoms on the surface of CdSe NCs is found responsible for the trap emission band that is red-shifted relative to the photoluminescence band edge.  相似文献   

9.
Low toxic InP/ZnS quantum dots (QDs), ZnS:Mn2+/ZnS nanocrystals and CdSe/ZnS nanoparticles were rendered water-dispersible by different ligand-exchange methods. Eventually, they were coated with bovine serum albumin (BSA) as a model protein. All particles were characterised by isotachophoresis (ITP), laser Doppler velocimetry (LDV) and agarose gel electrophoresis. It was found that the electrophoretic mobility and colloidal stability of ZnS:Mn2+/ZnS and CdSe/ZnS nanoparticles, which bore short-chain surface ligands, was primarily governed by charges on the nanoparticles, whereas InP/ZnS nanocrystals were not charged per se. BSA-coated nanoparticles showed lower electrophoretic mobility, which was attributed to their larger size and smaller overall charge. However, these particles were colloidally stable. This stability was probably caused by steric stabilisation of the BSA coating.  相似文献   

10.
Lead halide perovskite nanocrystals (NCs) hold strong promise for a variety of light‐harvesting, emitting, and detecting applications, all of which, however, could be complicated by multicarrier Auger recombination. Therefore, complete documentation of the size‐ and composition‐dependent Auger recombination rates of these NCs is highly desirable, as it can guide system design in many applications. Herein we report the synthesis and Auger measurements of monodisperse APbX3 (A=Cs and FA; X=Cl, Br, and I) NCs in an extensive size range (ca. 3–9 nm). The biexciton Auger lifetime of all the NCs scales linearly with the NC volume. The scaling coefficient is virtually independent of the cation but rather depends sensitively on the anion, and is 0.035, 0.085, and 0.142 ps nm?3 for Cl, Br, and I, respectively. In all of these nanocrystals the Auger recombination is much faster than in standard CdSe and PbSe NCs (ca. 1 ps nm?3).  相似文献   

11.
Lead halide perovskite nanocrystals (NCs) hold strong promise for a variety of light-harvesting, emitting, and detecting applications, all of which, however, could be complicated by multicarrier Auger recombination. Therefore, complete documentation of the size- and composition-dependent Auger recombination rates of these NCs is highly desirable, as it can guide system design in many applications. Herein we report the synthesis and Auger measurements of monodisperse APbX3 (A=Cs and FA; X=Cl, Br, and I) NCs in an extensive size range (ca. 3–9 nm). The biexciton Auger lifetime of all the NCs scales linearly with the NC volume. The scaling coefficient is virtually independent of the cation but rather depends sensitively on the anion, and is 0.035, 0.085, and 0.142 ps nm−3 for Cl, Br, and I, respectively. In all of these nanocrystals the Auger recombination is much faster than in standard CdSe and PbSe NCs (ca. 1 ps nm−3).  相似文献   

12.
水相中荧光CdSe纳米晶的优化合成与表征   总被引:2,自引:0,他引:2  
Ⅱ-Ⅵ族半导体纳米粒子(也称半导体量子点(semiconductor quantum dots)简称NCs)由于其独特的光学、光化学、电化学以及非线性光学性质已逐渐引起人们的广泛关注。而Ⅱ-Ⅵ族NCs最诱人的 潜在应用是作为荧光探针应用于生物体系,在生命科学研究中起到定性和定量标记分子和细胞的作用。  相似文献   

13.
For colloidal semiconductor nanocrystals (NCs), replacement of insulating organic capping ligands with chemically diverse inorganic clusters enables the development of functional solids in which adjacent NCs are strongly coupled. Yet controlled assembly methods are lacking to direct the arrangement of charged, inorganic cluster‐capped NCs into open networks. Herein, we introduce coordination bonds between the clusters capping the NCs thus linking the NCs into highly open gel networks. As linking cations (Pt2+) are added to dilute (under 1 vol %) chalcogenidometallate‐capped CdSe NC dispersions, the NCs first form clusters, then gels with viscoelastic properties. The phase behavior of the gels for variable [Pt2+] suggests they may represent nanoscale analogues of bridged particle gels, which have been observed to form in certain polymer colloidal suspensions.  相似文献   

14.
Two capillary electrophoretic methods, a micellar electrokinetic electrophoretic (MEKC) one and a capillary zone electrophoretic (CZE) one, were developed for the separation of 12 constituents in Artemisiae Capillaris Herba. Detection at 254 nm with 20 mM sodium dodecyl sulfate and 20 mM sodium borate buffer (pH 9.82) in MEKC or with 25 mM sodium borate and 6.75 mg/ml 2,3,6-tri-O-methyl-beta-cyclodextrin buffer in CZE was found to be the most suitable approach for this analysis. Within 42 min, the MEKC method could successfully separate 12 authentic constituents, whereof chlorogenic acid, however, appeared as a broad and split peak, and capillarisin and chlorogenic acid overlapped partially with other coexisting substances in crude extract of the herb. The CZE method could completely overcome these problems and was used to determine the amounts of capillarisin, chlorogenic acid, scopoletin and caffeic acid in the extract. The effect of buffers on the constituent separation and the validation of the two methods were discussed.  相似文献   

15.
The capillary zone electrophoresis (CZE) has recently been proposed by our group as a novel technique for outer membrane vesicles (OMVs) characterization (J. Chromatography 1621 (2020) 461047). In present work the impact of selected parameters of CZE method on OMVs isolates analysis was assessed. It was shown that the extension of sample injection plug length significantly improves the detectability of macromolecular aggregates in CZE. Moreover, a negligible adsorption of OMVs to both uncoated and polymer-modified (poly(DMA-GMA-MAPS)) capillary walls was proven. Finally, the relaxation effect as well as deformation/polarization of vesicles were demonstrated to affect OMVs electrophoretic mobility. The significance of these findings was discussed.  相似文献   

16.
Colloid nanocrystals (NCs) mainly include metal nanocrystals, semiconductor nanocrystals, and insulator nanocrystals, exhibiting interesting size-dependent electrical, optical, magnetic, and chemical properties that cannot be achieved by their bulk counterparts. However, there’s a critical problem that NCs tend to aggregate, which induces degradation of their performance. Hyperbranched polymers (HPs) possess excellent attributes of three-dimensional topology, low viscosity, good solubility, and plenty of modifiable terminal groups. The combination of NCs and HPs to form nanohybrids cannot only endow NCs with multifunctionality, uniform dispersibility, and splendid solubility but also can impart extra properties to HPs. This article reviews the recent progress and state-of-the-art of the synthesis and applications of NCs-HPs nanohybrids (NHBs). NHBs can be obtained by three approaches: HPs first (i.e., NCs are formed with the stabilizer of HPs), NCs first (i.e., HPs are grafted on the surface of as-prepared NCs), and ligand exchange (the original ligand of NCs is replaced with HPs). Various HPs including hyperbranched poly(amidoamine), polyethylenimine, polyglycerol, polyester, polyamide, polyurethane, and poly(3-ethyl-3-hydroxymethyloxetane), as well as sorts of NCs such as metals (e.g., Ag, Au, Pd, Pt, and Rh), quantum dots (e.g., ZnO, CdS, CdTe, CdSe, and SnO2), magnetic oxides (e.g., Fe3O4), rare earth compounds, and so forth, have been used to obtain NHBs. The NHBs can be applied in nanocatalysis, antimicrobia, biosensor, biological labeling, and other fields promising their bright future.  相似文献   

17.
A sequential electrostacking method based on anion-selective exhaustive injection (ASEI) and base-stacking (BS) is presented for the preconcentration and determination of inorganic anions by capillary zone electrophoresis (CZE) in this paper. Tetradecyltrimethylammonium bromide as an electroosmotic flow (EOF) modifier was added into the buffer to suppress EOF of the capillary. Firstly, a water plug was hydrodynamically injected into the capillary. During ASEI under negative high voltage, the sample anions migrated quickly towards the boundary between the water plug and buffer in the capillary. Then an alkaline zone was injected electrokinetically to concentrate the anions further. With the sequential electrostacking method, the preconcentration factor of (0.8-1.3) x 10(5) was obtained compared with the conventionally electrokinetic injection and the relative standard deviation of peak area was 3.3-5.3% (n = 5). The detection limits of ASEI-BS-CZE for six inorganic anions were 6-14 ng/L. The proposed method has been adopted to analyze six anions in cigarette samples successfully.  相似文献   

18.
A new capillary zone electrophoretic method was developed for the determination of bromide ion in raw and drinking waters. An NaCl-based low-pH buffer caused a reduction of electroosmotic flow (EOF) in the buffer zone, whereas injected water sample resulted in higher EOF in the sample zone thus pumping out the neutral water plug. Sample stacking was used for the preconcentration. The method was applicable for waters from low to intermediate ionic strengths, i.e., the concentration of chloride should preferably be less than 40 mg/l. The method had a limit of detection of 15 micrograms/l at a signal-to-noise ratio of three (S/N = 3) and a limit of quantitation of 20 micrograms/l. CZE results obtained with real samples were compared with ion chromatography--inductively coupled mass spectrometric results.  相似文献   

19.
The luminescence porous materials of CdTe or CdSe nanocrystals (NCs) were prepared by filling the corresponding NCs into the voids of colloidal crystal by co-deposition of polymer beads and NCs. After removing the beads with tetrahydrofuran (THF), the 3D-ordered porous materials of CdTe (or CdSe) NCs were obtained. The wavelength of maximum photoluminescence of the NCs porous material shows obvious red shift compared with their aqueous dispersion. Under the excitation of high-energy electron the porous materials of CdTe and CdSe NCs will emit photons that can be collected to form a cathode luminescence (CL) image.  相似文献   

20.
Sample injection is a crucial step in CE. In past, many efforts have been focused on concentrating the analytes into a sharp sample plug. In 2006, pressure‐assisted electrokinetic injection (PAEKI) was proposed as a new preconcentration technique for anions. In this study, we expanded the applicability of PAEKI to online preconcentrate positively charged analytes. l ‐Arginine, l ‐lysine, and imidazole were chosen as target analytes for method development. The enhancement factor of PAEKI was over 3000‐fold. When CZE was coupled with a Q‐TOF system, PAEKI delivers a detection limit of 18–28 pg/mL and a dynamic calibration range over four orders of magnitude. The RSD was less than 6.4% (n = 4) on both peak area and migration time, indicating a good repeatability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号