首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A vibro-impact forming machine with double masses is considered. The components of the vibrating system collide with each other. Such models play an important role in the studies of dynamics of mechanical systems with impacting components. The Poincaré section associated with the state of the impact-forming system, just immediately after the impact, is chosen, and the period n single-impact motion and its disturbed map are derived analytically. A center manifold theorem technique is applied to reduce the Poincaré map to a two-dimensional map, and the normal form map associated with codimension two bifurcation of 1:2 resonance is obtained. Unfolding of the normal form map is analyzed. Dynamical behavior of the impact-forming system, near the point of codimension two bifurcation, is investigated by using qualitative analyses and numerical simulation. Near the point of codimension two bifurcation there exists not only Neimark-Sacker bifurcation associated with period one single-impact motion, but also Neimark-Sacker bifurcation of period two double-impact motion. Transition of different forms of fixed points of single-impact periodic orbits, near the bifurcation point, is demonstrated, and different routes from periodic impact motions to chaos are also discussed. The project supported by the National Natural Science Foundation of China (10572055, 50475109) and the Natural Science Foundation of Gansu Province Government of China (3ZS051-A25-030(key item)) The English text was polished by Keren Wang.  相似文献   

2.
Codimension two bifurcation of a vibro-bounce system   总被引:1,自引:0,他引:1  
A three-degree-of-freedom vibro-bounce system is considered. The disturbed map of period one single-impact motion is derived analytically. A center manifold theorem technique is applied to reduce the Poincaré map to a three-dimensional one, and the normal form map associated with Hopf-flip bifurcation is obtained. Dynamical behavior of the system, near the point of codimension two bifurcation, is investigated by using qualitative analysis and numerical simulation. It is found that near the point of Hopf-flip bifurcation there exists not only Hopf bifurcation of period one single-impact motion, but also Hopf bifurcation of period two double-impact motion. The results from simulation show that there exists an interesting torus doubling bifurcation near the codimension two bifurcation. The torus doubling bifurcation makes the quasi-periodic attractor associated with period one single-impact motion transform to the other quasi-periodic attractor represented by two attracting closed circles. The torus bifurcation is qualitatively different from the typical torus doubling bifurcation occurring in the vibro-impact systems. Different routes from period one single-impact motion to chaos are observed by numerical simulation.The project supported by the National Natural Science Foundation of China (10172042, 50475109) and the Natural Science Foundation of Gansu Province Government of China (ZS-031-A25-007-Z (key item))  相似文献   

3.
强共振情况下冲击成型机的亚谐与Hopf分岔   总被引:4,自引:0,他引:4  
罗冠炜  谢建华 《力学学报》2003,35(5):592-598
通过理论分析与数值仿真研究了双质体冲击振动成型机的周期运动在强共振条件下的亚谐分岔与Hopf分岔,证实了此系统的1/1周期运动在强共振(λ0^4=1)条件下可以分岔为稳定的4/4周期运动及概周期运动.讨论了冲击映射的奇异性,分析了冲击振动系统的“擦边”运动对强共振条件下周期运动及全局分岔的影响。  相似文献   

4.
乐源 《力学学报》2016,48(1):163-172
考虑一类具有对称性的三自由度碰撞振动系统.系统的庞加莱映射在一定条件下存在对称不动点,对应于系统的对称周期运动.根据对称性导出庞加莱映射P是另外一个隐式虚拟映射Q的二次迭代.推导了庞加莱映射对称不动点的解析表达式.根据映射不动点的稳定性及分岔理论,映射P的对称不动点发生内伊马克沙克-音叉(Neimark--Saker-pitchfork)分岔对应于映射Q发生内伊马克沙克-倍化(Neimark--Sakerflip)分岔.利用隐式虚拟映射Q,通过对范式作两参数开折分析,研究了映射P的对称不动点在内伊马克沙克-音叉分岔点附近的局部动力学行为.碰撞振动系统在这个余维二分岔点附近的局部动力学行为可能表现为投影后的庞加莱截面上的单一对称不动点、一对共轭不动点、单一对称拟周期吸引子以及一对共轭拟周期吸引子.数值模拟得到了内伊马克沙克-音叉分岔点附近的各种可能情况.内伊马克沙克-分岔和音叉分岔互相作用可能产生新的结果:对称不动点虽然首先分岔为两个共轭不动点,但是这两个共轭不动点是不稳定的,最终收敛到同一个对称拟周期吸引子.  相似文献   

5.
擦边分岔是碰振机械系统的一种重要分岔行为. 以固定相位面作为Poincaré截面, 建立了线性碰振系统单碰周期$n$运动的Poincaré映射. 通过分析该映射,得到了系统 发生擦边分岔的条件和分岔方程,并以单自由度碰振系统为实例验证了分析结果的正确性. 该方法不仅可以计算线性碰振系统擦边分岔的参数值,还可以计算系统的任意周 期$n$解的分岔参数值.  相似文献   

6.
We develop a method to compute the Lyapunov spectrum and Lyapunov dimension, which is effective for both symmetric and unsymmetric vibro-impact systems. The Poincaré section is chosen at the moment after impacting, and the six-dimensional Poincaré map is established. The time between two consecutive impacts is determined by the initial conditions and the impact condition, hence the Poincaré map is an implicit map. The Poincaré map is used to calculate all the Lyapunov exponents and the Lyapunov dimension. By numerical simulations, the attractors are represented in the projected Poincaré section, and the Lyapunov spectrum is obtained. The multi-degree-of-freedom vibro-impact system may exhibit complex quasi-periodic attractors, which can be characterized by the Lyapunov dimension.  相似文献   

7.
A two-degree-of-freedom plastic impact oscillator with a frictional slider is considered. Dynamics of the plastic impact oscillator are analyzed by a three-dimensional map, which describes free flight and sticking solutions of two masses of the system, between impacts, supplemented by transition conditions at the instants of impacts. Piecewise property and singularity are found to exist in the impact Poincaré map. The piecewise property of the map is caused by the transitions of free flight and sticking motions of two masses immediately after the impact, and the singularity of the map is generated via the grazing contact of two masses immediately before the impact. These properties of the map have been shown to exhibit particular types of sliding and grazing bifurcations of periodic-impact motions under parameter variation. The influence of piecewise property, grazing singularity and parameter variation on dynamics of the vibro-impact system is analyzed. The global bifurcation diagrams of before-impact velocity as a function of the excitation frequency are plotted to predict much of the qualitative behavior of the system. The global bifurcations of period-N single-impact motions of the plastic impact oscillator are found to exhibit extensive and systematic characteristics. Dynamics of the impact oscillator, in the elastic impact case, is also analyzed. This type of impact is modelled by using the conditions of conservation of momentum and an instantaneous coefficient of restitution rule. The differences in periodic-impact motions and bifurcations are found by making a comparison between dynamic behaviors of the plastic and elastic impact oscillators with a frictional slider. The best progression of the plastic impact oscillator is found to occur in period-1 single-impact sticking motion with large impact velocity. The largest progression of the elastic impact oscillator occurs in period-1 multi-impact motion. The simulative results show that the plastic impact feature for the impact-progressive oscillator is of a considerable importance in minimizing adverse effects such as high noise levels, wear and tear caused by impacts.  相似文献   

8.
This paper addresses the problem of Hopf-flip bifurcation of high dimensional maps. Using the center manifold theorem, we obtain a three dimensional reduced map through the projection technique. The reduced map is further transformed into its normal form whose coefficients are determined by that of the original system. The dynamics of the map near the Hopf-flip bifurcation point is approximated by a so called ‘‘time-2τ2 map’’ of a planar autonomous differential equation. It is shown that high dimensional maps may result in cycles of period two, tori T1 (Hopf invariant circles), tori 2T1 and tori 2T2 depending both on how the critical eigenvalues pass the unit circle and on the signs of resonant terms’ coefficients. A two-degree-of-freedom vibro-impact system is given as an example to show how the procedure of this paper works. It reveals that through Hopf-flip bifurcations, periodic motions may lead directly to different types of motion, such as subharmonic motions, quasi-periodic motions, motions on high dimensional tori and even to chaotic motions depending both on change in direction of the parameter vector and on the nonlinear terms of the first three orders.The project supported by the National Natural Science Foundation of China (10472096)The English text was polished by Ron Marshall.  相似文献   

9.
A two-degrees-of-freedom vibratory system with a clearance or gap is under consideration based on the Poincard map. Stability and local bifurcation of the period-one doubleimpact symmetrical motion of the system are analyzed by using the equation of map. The routes from periodic impact motions to chaos, via pitchfork bifurcation, period-doubling bifurcation and grazing bifurcation, are studied by numerical simulation. Under suitable system parameter conditions, Neimark-Sacker bifurcations associated with periodic impact motion can occur in the two-degrees-of-freedom vibro-impact system.  相似文献   

10.
两自由度塑性碰撞振动系统的动力学研究   总被引:6,自引:0,他引:6  
用三维映射表示具有单侧刚性约束的两自由度振动系统在塑性碰撞时的动力学方程。借助理论分析与数值方法研究了系统周期n-1振动的存在性与稳定性,描述了系统周期n-1振动的特点,讨论了碰撞振子与约束擦边引起的Poincare映射奇异性对系统全局分岔的影响。  相似文献   

11.
碰撞振动系统分岔与混沌的研究进展   总被引:11,自引:0,他引:11  
丁旺才  谢建华 《力学进展》2005,35(4):513-524
针对工程实际中普遍存在的碰撞振动系统这种典型的非光滑动力系统, 其研究具有重要的理论意义和工程实用价值. 碰撞振动系统动力学的分析与研究方法主要有理论分析、数值模拟以及应用与实验研究. 为了研究碰撞振动系统的周期运动稳定性、分岔及混沌, 采用的手段有建立Poincar\'{e}映射、中心流形和范式方法, 映射的分岔与混沌理论是碰撞振动系统研究的理论基础. 首先简述了碰撞振动系统的分析与研究方法, 光滑非线性系统动力学的分析方法部分可以推广到碰撞振动系统, 碰撞振动的不连续性导致一些方法的适用性和有效性问题. 进一步综述了碰撞振动系统周期运动稳定性、分岔、混沌及奇异性的理论研究和工程应用现状. 最后着重结合相关离散型映射系统的动力学发展, 对碰撞振动系统的分岔与混沌研究及存在的主要问题进行了讨论, 并展望了其发展趋势.   相似文献   

12.
A mathematical model is developed to describe oscillatory and progressive motions in dynamics of a plastic impact oscillator with a frictional slider. Dynamics of the impact oscillator is analyzed by a five-dimensional map, which describes free flight and sticking solutions of two masses of the system, between impacts, supplemented by transition conditions at the instants of impacts. Piecewise property and singularity are found to exist in the Poincaré map. The piecewise property is caused by the transitions of free flight and sticking motions of impacting masses immediately after the impact, and the singularity of the map is generated via the grazing contact of impacting masses immediately before the impact. These properties of the map have been shown to exhibit particular types of sliding and grazing bifurcations of periodic-impact motions under parameter variation. The influence of piecewise property, grazing singularities and various parameters on dynamics of the vibro-impact system is analyzed. The global bifurcation diagrams for before-impact velocity versus forcing frequency are plotted to predict much of the qualitative behavior of the system. The global bifurcations of period-n single-impact motions of the plastic-impact oscillator are found to exhibit extensive and systematic characteristics.  相似文献   

13.
An isotropic flexible shaft, acted by nonlinear fluid-induced forces generated from oil-lubricated journal bearings and hydrodynamic seal, is considered in this paper. Dimension reductions of the rotor system were carried out by both the standard Galerkin method and the nonlinear Galerkin method. Numerical simulations provide bifurcation diagrams, spectrum cascade, orbits of the disk center and Poincaré maps, to demonstrate the dynamical behaviors of the system. The results reveal transitions, or bifurcations, of the rotor whirl from being synchronous to non-synchronous as the unstable speed is exceeded. The non-synchronous oil/seal whirl is a quasi-periodic motion. In the regime of quasi-periodic motion, the “windows” of multi-periodic motion were found. The investigation shows that the nonlinear Galerkin method has an advantage over the standard one with the same order of truncations, because the influences of higher modes are considered by the former.  相似文献   

14.
This paper presents the nontwisted double-homoclinic-loop bifurcations with resonant eigenvalues in four dimensional vector fields. The Poincaré map is established to solve various problems in double-homoclinic-loop bifurcations with codimension 3. Bifurcation diagrams and bifurcation curves are given. Dedicated to Professor Zhifen Zhang on the occasion of her 80th birthday  相似文献   

15.
The aim of the paper is to give an overview of bifurcation phenomena which are typical for non-smooth dynamical systems. A small number of well-chosen examples of various kinds of non-smooth systems will be presented, followed by a discussion of the bifurcation phenomena in hand and a brief introduction to the mathematical tools which have been developed to study these phenomena. The bifurcations of equilibria in two planar non-smooth continuous systems are analysed by using a generalised Jacobian matrix. A mechanical example of a non-autonomous Filippov system, belonging to the class of differential inclusions, is studied and shows a number of remarkable discontinuous bifurcations of periodic solutions. A generalisation of the Floquet theory is introduced which explains bifurcation phenomena in differential inclusions. Lastly, the dynamics of the Woodpecker Toy is analysed with a one-dimensional Poincaré map method. The dynamics is greatly influenced by simultaneous impacts which cause discontinuous bifurcations.  相似文献   

16.
This paper treads discontinuous bifurcation in piecewise smooth systems of Filippov type. These bifurcations occur when a fixed point or a periodic orbit crosses with the border between two regions of smooth behavior. A detailed analysis of generalization Poincaré map and monodromy matrix which are related shows that subfamily of system with invariant cone-like objects is foliated by periodic orbits and determines its stability. In addition, we introduce a theoretical framework for analyzing 3D perturbed nonlinear piecewise smooth systems and give necessary conditions so that different types of bifurcations occur. The analysis identifies criteria for the existence of a novel bifurcation based on sensitively the location of the return map. Moreover, the piecewise smooth Melnikov function and sufficient conditions of the existence of the periodic orbits for nonlinear perturbed system are explicitly obtained.  相似文献   

17.
In this paper, unstable dynamics is considered for the models of vibro-impact systems with linear differential equations coupled to an impact map. To provide a skeleton for the organization of chaotic attractors, we propose a method for detecting unstable periodic orbits embedded in chaotic attractors through a combination of unconstrained optimization technique and Poincaré map. Three numerical examples from different vibro-impact models demonstrate that the strategy can efficiently detect unstable periodic orbits in chaotic attractors. In order to explore the mechanism responsible for the creation of multi-dimensional tori attractors, we also present another method to detect unstable quasiperiodic orbits embedded multi-dimensional tori attractors by examining a specially transient time series. The upper bound and lower bound of the transient time series (in the Poincaré map) can be obtained by analyzing transient Lyapunov exponent and transient Lyapunov dimension. Some examples verify the effectiveness of the numerical algorithm.  相似文献   

18.
19.
The goal of this paper is to present a new method to prove bifurcation of a branch of asymptotically stable periodic solutions of a T-periodically perturbed autonomous system from a T-periodic limit cycle of the autonomous unperturbed system. The method is based on a linear scaling of the state variables to convert, under suitable conditions, the singular Poincaré map (with two singularity conditions) associated to the perturbed autonomous system into an equivalent non-singular equation to which the classical implicit function theorem applies directly. As a result we obtain the existence of a unique branch of T-periodic solutions (usually found for bifurcations of co-dimension 2) as well as a relevant property of the spectrum of their derivatives. Finally, by a suitable representation formula of the classical Malkin bifurcation function, we show that our conditions are equivalent to the existence of a non-degenerate simple zero of the Malkin function. The novelty of the method is that it permits to solve the problem without explicit reduction of the dimension of the state space as it is usually done in the literature by the Lyapunov–Schmidt method.  相似文献   

20.
1 IntroductionandHypothesesInrecentyears,withthedevelopmentofnonlinearsciencesandthedeepstudyofchaoticphenomena,thebifurcationproblemsofhomoclinicloopsforhigherdimensionalsystemswerestudiedextensivelyandalotofresultswereobtained (seeRefs.[1~ 8] ) .Especially ,Refs.[3 ,4]discussedthehomoclinicloopbifurcationswithcodimension 2 .Refs.[5,6]consideredthedegeneratedhomoclinicbifurcations.Inthispaper,westudythebifurcationsoftwistedhomoclinicloopsandthestabilityinhigherdimensionalspace .Considerth…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号