首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A convenient pathway to new molecular organo-lanthanide-polyarsenides in general and to a f-element complex with the largest polyarsenide ligand in detail is reported. For this purpose, the activation of the solid state material As0nano (nanoscale gray arsenic) by the multi electron reducing agents [K(18-crown-6)][(Ln+II)2(μ-η66-C6H6)] (Ln = La, Ce, Cp′′ = 1,3-bis(trimethylsilyl)cyclopentadienyl anion) and [K(18-crown-6)]2[(Ln+II)2(μ-η66-C6H6)] (Ln = Ce, Nd) is shown. These non-classical divalent lanthanide compounds were used as three and four electron reducing agents where the product formation can be directed by variation of the applied reactant. The obtained Zintl anions As33−, As73−, and As144− were previously not accessible in molecular 4f-element chemistry. Additionally, the corresponding compounds with As144−-moieties represent the largest organo-lanthanide-polyarsenides known to date.

Reaction of non-classical divalent lanthanide compounds with nanoparticulate gray arsenic via three- and four-electron reduction led to a series of new f-element polyarsenides, including the largest f-element polyarsenide known to date.  相似文献   

2.
Co-crystallization of the prominent Fe(ii) spin-crossover (SCO) cation, [Fe(3-bpp)2]2+ (3-bpp = 2,6-bis(pyrazol-3-yl)pyridine), with a fractionally charged TCNQδ radical anion has afforded a hybrid complex [Fe(3-bpp)2](TCNQ)3·5MeCN (1·5MeCN, where δ = −0.67). The partially desolvated material shows semiconducting behavior, with the room temperature conductivity σRT = 3.1 × 10−3 S cm−1, and weak modulation of conducting properties in the region of the spin transition. The complete desolvation, however, results in the loss of hysteretic behavior and a very gradual SCO that spans the temperature range of 200 K. A related complex with integer-charged TCNQ anions, [Fe(3-bpp)2](TCNQ)2·3MeCN (2·3MeCN), readily loses the interstitial solvent to afford desolvated complex 2 that undergoes an abrupt and hysteretic spin transition centered at 106 K, with an 11 K thermal hysteresis. Complex 2 also exhibits a temperature-induced excited spin-state trapping (TIESST) effect, upon which a metastable high-spin state is trapped by flash-cooling from room temperature to 10 K. Heating above 85 K restores the ground-state low-spin configuration. An approach to improve the structural stability of such complexes is demonstrated by using a related ligand 2,6-bis(benzimidazol-2′-yl)pyridine (bzimpy) to obtain [Fe(bzimpy)2](TCNQ)6·2Me2CO (4) and [Fe(bzimpy)2](TCNQ)5·5MeCN (5), both of which exist as LS complexes up to 400 K and exhibit semiconducting behavior, with σRT = 9.1 × 10−2 S cm−1 and 1.8 × 10−3 S cm−1, respectively.

Co-crystallization of the cationic complex [Fe(3-bpp)2]2+ with fractionally charged TCNQδ anions (0 < δ < 1) affords semiconducting spin-crossover (SCO) materials. The abruptness of SCO is strongly dependent on the interstitial solvent content.  相似文献   

3.
The two-electron and two-proton p-hydroquinone/p-benzoquinone (H2Q/BQ) redox couple has mechanistic parallels to the function of ubiquinone in the electron transport chain. This proton-dependent redox behavior has shown applicability in catalytic aerobic oxidation reactions, redox flow batteries, and co-electrocatalytic oxygen reduction. Under nominally aprotic conditions in non-aqueous solvents, BQ can be reduced by up to two electrons in separate electrochemically reversible reactions. With weak acids (AH) at high concentrations, potential inversion can occur due to favorable hydrogen-bonding interactions with the intermediate monoanion [BQ(AH)m. The solvation shell created by these interactions can mediate a second one-electron reduction coupled to proton transfer at more positive potentials ([BQ(AH)m + nAH + e ⇌ [HQ(AH)(m+n)−1(A)]2−), resulting in an overall two electron reduction at a single potential at intermediate acid concentrations. Here we show that hydrogen-bonded adducts of reduced quinones and the proton donor 2,2,2-trifluoroethanol (TFEOH) can mediate the transfer of electrons to a Mn-based complex during the electrocatalytic reduction of dioxygen (O2). The Mn electrocatalyst is selective for H2O2 with only TFEOH and O2 present, however, with BQ present under sufficient concentrations of TFEOH, an electrogenerated [H2Q(AH)3(A)2]2− adduct (where AH = TFEOH) alters product selectivity to 96(±0.5)% H2O in a co-electrocatalytic fashion. These results suggest that hydrogen-bonded quinone anions can function in an analogous co-electrocatalytic manner to H2Q.

Non-covalent interactions between reduced p-benzoquinone species and weak acids stabilize intermediates which can switch dioxygen reduction selectivity from H2O2 to H2O for a molecular Mn catalyst.  相似文献   

4.
Addition of [UI2(THF)3(μ-OMe)]2·THF (2·THF) to THF solutions containing 6 equiv. of K[C14H10] generates the heteroleptic dimeric complexes [K(18-crown-6)(THF)2]2[U(η6-C14H10)(η4-C14H10)(μ-OMe)]2·4THF (118C6·4THF) and {[K(THF)3][U(η6-C14H10)(η4-C14H10)(μ-OMe)]}2 (1THF) upon crystallization of the products in THF in the presence or absence of 18-crown-6, respectively. Both 118C6·4THF and 1THF are thermally stable in the solid-state at room temperature; however, after crystallization, they become insoluble in THF or DME solutions and instead gradually decompose upon standing. X-ray diffraction analysis reveals 118C6·4THF and 1THF to be structurally similar, possessing uranium centres sandwiched between bent anthracenide ligands of mixed tetrahapto and hexahapto ligation modes. Yet, the two complexes are distinguished by the close contact potassium-arenide ion pairing that is seen in 1THF but absent in 118C6·4THF, which is observed to have a significant effect on the electronic characteristics of the two complexes. Structural analysis, SQUID magnetometry data, XANES spectral characterization, and computational analyses are generally consistent with U(iv) formal assignments for the metal centres in both 118C6·4THF and 1THF, though noticeable differences are detected between the two species. For instance, the effective magnetic moment of 1THF (3.74 μB) is significantly lower than that of 118C6·4THF (4.40 μB) at 300 K. Furthermore, the XANES data shows the U LIII-edge absorption energy for 1THF to be 0.9 eV higher than that of 118C6·4THF, suggestive of more oxidized metal centres in the former. Of note, CASSCF calculations on the model complex {[U(η6-C14H10)(η4-C14H10)(μ-OMe)]2}2− (1*) shows highly polarized uranium–arenide interactions defined by π-type bonds where the metal contributions are primarily comprised by the 6d-orbitals (7.3 ± 0.6%) with minor participation from the 5f-orbitals (1.5 ± 0.5%). These unique complexes provide new insights into actinide–arenide bonding interactions and show the sensitivity of the electronic structures of the uranium atoms to coordination sphere effects.

Use of Chatt metal-arene protocols with uranium leads to the synthesis of the first well-characterized, unsupported actinide–arenide sandwich complexes. The electronic structures of the actinide centres show a key sensitivity to ion pairing effects.  相似文献   

5.
Until now the reactions of organic peroxy radicals (RO2) with alkenes in the gas phase have been essentially studied at high temperature (T ≥ 360 K) and in the context of combustion processes, while considered negligible in the Earth''s atmosphere. In this work, the reactions of methyl-, 1-pentyl- and acetylperoxy radicals (CH3O2, C5H11O2, and CH3C(O)O2, respectively) with 2-methyl-2-butene, 2,3-dimethyl-2-butene and for the first time the atmospherically relevant isoprene, α-pinene, and limonene were studied at room temperature (298 ± 5 K). Monitoring directly the radicals with chemical ionization mass spectrometry led to rate coefficients larger than expected from previous combustion studies but following similar trends in terms of alkenes, with (in molecule−1 cm3 s−1) = 10−18 to 10−17 × 2/2 and = 10−14 to 10−13 × 5/5. While these reactions would be negligible for CH3O2 and aliphatic RO2 at room temperature, this might not be the case for acyl-, and perhaps hydroxy-, allyl- and other substituted RO2. Combining our results with the Structure–Activity Relationship (SAR) predicts kII(298 K) ∼10−14 molecule−1 cm3 s−1 for hydroxy- and allyl-RO2 from isoprene oxidation, potentially accounting for up to 14% of their sinks in biogenic-rich regions of the atmosphere and much more in laboratory studies.

The reactions of organic peroxy radicals with alkenes, overlooked until now, could be more significant than expected for some RO2 in the atmosphere.  相似文献   

6.
Rigid planar π-conjugated groups are adopted for designing ultraviolet (UV) nonlinear optical (NLO) materials extensively. However, for these UV NLO crystals, the realization of a strong second harmonic generation (SHG) response is commonly accompanied by undesired overlarge birefringence. Herein, we propose a new functional gene, the flexible π-conjugated (C3H2O4)2− group, for designing a UV NLO crystal with a balance between the SHG response and birefringence. Furthermore, the combination of low-coordinated and high-coordinated alkali cations with the flexible (C3H2O4)2− group results in finding a new mixed alkali malonate, KLi(C3H2O4)·H2O (KLMW). As expected, KLMW exhibits a strong SHG efficiency (3 × KDP) and moderate birefringence (0.103 @ 1064 nm). In addition, it has a short UV cut-off edge of 231 nm and can be conveniently grown from solution. More importantly, it realized fourth harmonic generation with type-I phase-matching. Therefore, these excellent properties make KLMW a potential practical UV NLO material.

The flexible (C3H2O4)2− groups were employed to design a new mixed alkali malonate KLi(C3H2O4)·H2O as an potential UV NLO crystal achieving the balance between strong SHG efficiency and moderate birefringence.  相似文献   

7.
Designing solid-state electrolytes for proton batteries at moderate temperatures is challenging as most solid-state proton conductors suffer from poor moldability and thermal stability. Crystal–glass transformation of coordination polymers (CPs) and metal–organic frameworks (MOFs) via melt-quenching offers diverse accessibility to unique properties as well as processing abilities. Here, we synthesized a glassy-state CP, [Zn3(H2PO4)6(H2O)3](1,2,3-benzotriazole), that exhibited a low melting temperature (114 °C) and a high anhydrous single-ion proton conductivity (8.0 × 10−3 S cm−1 at 120 °C). Converting crystalline CPs to their glassy-state counterparts via melt-quenching not only initiated an isotropic disordered domain that enhanced H+ dynamics, but also generated an immersive interface that was beneficial for solid electrolyte applications. Finally, we demonstrated the first example of a rechargeable all-solid-state H+ battery utilizing the new glassy-state CP, which exhibited a wide operating-temperature range of 25 to 110 °C.

Melt-quenched coordination polymer glass shows exclusive H+ conductivity (8.0 × 10−3 S cm−1 at 120 °C, anhydrous) and optimal mechanical properties (42.8 Pa s at 120 °C), enables the operation of an all-solid-state proton battery from RT to 110 °C.  相似文献   

8.
High proton conducting electrolytes with mechanical moldability are a key material for energy devices. We propose an approach for creating a coordination polymer (CP) glass from a protic ionic liquid for a solid-state anhydrous proton conductor. A protic ionic liquid (dema)(H2PO4), with components which also act as bridging ligands, was applied to construct a CP glass (dema)0.35[Zn(H2PO4)2.35(H3PO4)0.65]. The structural analysis revealed that large Zn–H2PO4/H3PO4 coordination networks formed in the CP glass. The network formation results in enhancement of the properties of proton conductivity and viscoelasticity. High anhydrous proton conductivity (σ = 13.3 mS cm−1 at 120 °C) and a high transport number of the proton (0.94) were achieved by the coordination networks. A fuel cell with this CP glass membrane exhibits a high open-circuit voltage and power density (0.15 W cm−2) under dry conditions at 120 °C due to the conducting properties and mechanical properties of the CP glass.

A proton-conducting coordination polymer glass derived from a protic ionic liquid works as a moldable solid electrolyte and the anhydrous fuel cell showed IV performance of 0.15 W cm−2 at 120 °C.  相似文献   

9.
In polynuclear biological active sites, multiple electrons are needed for turnover, and the distribution of these electrons among the metal sites is affected by the structure of the active site. However, the study of the interplay between structure and redox distribution is difficult not only in biological systems but also in synthetic polynuclear clusters since most redox changes produce only one thermodynamically stable product. Here, the unusual chemistry of a sterically hindered trichromium complex allowed us to probe the relationship between structural and redox isomerism. Two structurally isomeric trichromium imides were isolated: asymmetric terminal imide (tbsL)Cr3(NDipp) and symmetric, μ3-bridging imide (tbsL)Cr33–NBn) ((tbsL)6− = (1,3,5-C6H9(NC6H4-o-NSitBuMe2)3)6−). Along with the homovalent isocyanide adduct (tbsL)Cr3(CNBn) and the bisimide (tbsL)Cr33–NPh)(NPh), both imide isomers were examined by multiple-wavelength anomalous diffraction (MAD) to determine the redox load distribution by the free refinement of atomic scattering factors. Despite their compositional similarities, the bridging imide shows uniform oxidation of all three Cr sites while the terminal imide shows oxidation at only two Cr sites. Further oxidation from the bridging imide to the bisimide is only borne at the Cr site bound to the second, terminal imido fragment. Thus, depending on the structural motifs present in each [Cr3] complex, MAD revealed complete localization of oxidation, partial localization, and complete delocalization, all supported by the same hexadentate ligand scaffold.

Application of high-resolution Multiwavelength Anomalous Diffraction (MAD) allows the assignment of localized, partly delocalized, and fully delocalized oxidation in a series of trichromium imide isomers.  相似文献   

10.
Aquation is often acknowledged as a necessary step for metallodrug activity inside the cell. Hemilabile ligands can be used for reversible metallodrug activation. We report a new family of osmium(ii) arene complexes of formula [Os(η6-C6H5(CH2)3OH)(XY)Cl]+/0 (1–13) bearing the hemilabile η6-bound arene 3-phenylpropanol, where XY is a neutral N,N or an anionic N,O bidentate chelating ligand. Os–Cl bond cleavage in water leads to the formation of the hydroxido/aqua adduct, Os–OH(H). In spite of being considered inert, the hydroxido adduct unexpectedly triggers rapid tether ring formation by attachment of the pendant alcohol–oxygen to the osmium centre, resulting in the alkoxy tethered complex [Os(η6-arene-O1)(XY)]n+. Complexes 1C–13C of formula [Os(η61-C6H5(CH2)3OH/O)(XY)]+ are fully characterised, including the X-ray structure of cation 3C. Tether-ring formation is reversible and pH dependent. Osmium complexes bearing picolinate N,O-chelates (9–12) catalyse the hydrogenation of pyruvate to lactate. Intracellular lactate production upon co-incubation of complex 11 (XY = 4-Me-picolinate) with formate has been quantified inside MDA-MB-231 and MCF7 breast cancer cells. The tether Os–arene complexes presented here can be exploited for the intracellular conversion of metabolites that are essential in the intricate metabolism of the cancer cell.

New Os(ii) half-sandwich complexes bearing a pendant alcohol prompt reversible tether-ring formation upon aquation, protecting Os against deactivation. Excitingly, these complexes mediate hydrogenation of pyruvate to lactate inside cancer cells.  相似文献   

11.
Described here is the de novo design and synthesis of a series of 6H-dipyrido[1,2-e:2′,1′-i]purin-6-ones (DPs) as a new class of visible-light photoredox catalysts (PCs). The synthesized DP1–5 showed their λAbs(max) values in 433–477 nm, excited state redox potentials in 1.15–0.69 eV and −1.41 to −1.77 eV (vs. SCE), respectively. As a representative, DP4 enables the productive guanylation of various amines, including 1°, 2°, and 3°-alkyl primary amines, secondary amines, aryl and heteroaryl amines, amino-nitrile, amino acids and peptides as well as propynylamines and α-amino esters giving diversities in biologically important guanidines and cyclic guanidines. The photocatalytic efficacy of DP4 in the guanylation overmatched commonly used Ir and Ru polypyridyl complexes, and some organic PCs. Other salient merits of this method include broad substrate scope and functional group tolerance, gram-scale synthesis, and versatile late-stage derivatizations that led to a derivative 81 exhibiting 60-fold better anticancer activity against Ramos cells with the IC50 of 0.086 μM than that of clinical drug ibrutinib (5.1 μM).

A novel visible-light photocatalyst was designed and its photocatalytic efficacy in the guanylation of amines overmatched common metal-core and organic photocatalysts.  相似文献   

12.
We demonstrate phage-display screening on self-assembled ligands that enables the identification of oligopeptides that selectively bind dynamic supramolecular targets over their unassembled counterparts. The concept is demonstrated through panning of a phage-display oligopeptide library against supramolecular tyrosine-phosphate ligands using 9-fluorenylmethoxycarbonyl-phenylalanine-tyrosine-phosphate (Fmoc-FpY) micellar aggregates as targets. The 14 selected peptides showed no sequence consensus but were enriched in cationic and proline residues. The lead peptide, KVYFSIPWRVPM-NH2 (P7) was found to bind to the Fmoc-FpY ligand exclusively in its self-assembled state with KD = 74 ± 3 μM. Circular dichroism, NMR and molecular dynamics simulations revealed that the peptide interacts with Fmoc-FpY through the KVYF terminus and this binding event disrupts the assembled structure. In absence of the target micellar aggregate, P7 was further found to dynamically alternate between multiple conformations, with a preferred hairpin-like conformation that was shown to contribute to supramolecular ligand binding. Three identified phages presented appreciable binding, and two showed to catalyze the hydrolysis of a model para-nitro phenol phosphate substrate, with P7 demonstrating conformation-dependent activity with a modest kcat/KM = 4 ± 0.3 × 10−4 M−1 s−1.

Phage-display screening on self-assembled tyrosine-phosphate ligands enables the identification of oligopeptides selective to dynamic supramolecular targets, with the lead peptide showing a preferred hairpin-like conformation and catalytic activity.  相似文献   

13.
The current investigation demonstrates highly efficient photochemical upconversion (UC) where a long-lived Zr(iv) ligand-to-metal charge transfer (LMCT) complex serves as a triplet photosensitizer in concert with well-established 9,10-diphenylanthracene (DPA) along with newly conceived DPA–carbazole based acceptors/annihilators in THF solutions. The initial dynamic triplet–triplet energy transfer (TTET) processes (ΔG ∼ −0.19 eV) featured very large Stern–Volmer quenching constants (KSV) approaching or achieving 105 M−1 with bimolecular rate constants between 2 and 3 × 108 M−1 s−1 as ascertained using static and transient spectroscopic techniques. Both the TTET and subsequent triplet–triplet annihilation (TTA) processes were verified and throughly investigated using transient absorption spectroscopy. The Stern–Volmer metrics support 95% quenching of the Zr(iv) photosensitizer using modest concentrations (0.25 mM) of the various acceptor/annihilators, where no aggregation took place between any of the chromophores in THF. Each of the upconverting formulations operated with continuous-wave linear incident power dependence (λex = 514.5 nm) down to ultralow excitation power densities under optimized experimental conditions. Impressive record-setting ηUC values ranging from 31.7% to 42.7% were achieved under excitation conditions (13 mW cm−2) below that of solar flux integrated across the Zr(iv) photosensitizer''s absorption band (26.7 mW cm−2). This study illustrates the importance of supporting the continued development and discovery of molecular-based triplet photosensitizers based on earth-abundant metals.

The LMCT photosensitizer Zr(MesPDPPh)2 paired with DPA-based acceptors enabled low power threshold photochemical upconversion with record-setting quantum efficiencies.  相似文献   

14.
A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range (kr = 10−1 to 10−4 s−1), at several temperatures (80–120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate)2] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay (tind) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using in situ X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb22-S)2(Pb(O2CR)2)2 structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures.

Colloidal lead chalcogenide nanocrystals nucleate slowly throughout their synthesis rather than in a burst. There is no correlation between the temporal width of the nucleation phase and the polydispersity.  相似文献   

15.
Piezoelectric materials that generate electricity when deforming are ideal for many implantable medical sensing devices. In modern piezoelectric materials, inorganic ceramics and polymers are two important branches, represented by lead zirconate titanate (PZT) and polyvinylidene difluoride (PVDF). However, PVDF is a nondegradable plastic with poor crystallinity and a large coercive field, and PZT suffers from high sintering temperature and toxic heavy element. Here, we successfully design a metal-free small-molecule ferroelectric, 3,3-difluorocyclobutanammonium hydrochloride ((3,3-DFCBA)Cl), which has high piezoelectric voltage coefficients g33 (437.2 × 10−3 V m N−1) and g31 (586.2 × 10−3 V m N−1), a large electrostriction coefficient Q33 (about 4.29 m4 C−2) and low acoustic impedance z0 (2.25 × 106 kg s−1 m−2), significantly outperforming PZT (g33 = 34 × 10−3 V m N−1 and z0 = 2.54 × 107 kg s−1 m−2) and PVDF (g33 = 286.7 × 10−3 V m N−1, g31 = 185.9 × 10−3 V m N−1, Q33 = 1.3 m4 C−2, and z0 = 3.69 × 106 kg s−1 m−2). Such a low acoustic impedance matches that of the body (1.38–1.99 × 106 kg s−1 m−2) reasonably well, making it attractive as next-generation biocompatible piezoelectric devices for health monitoring and “disposable” invasive medical ultrasound imaging.

A small-molecule organic ferroelectric (3,3-DFCBA)Cl has high piezoelectric voltage coefficients g33 (437.2 × 10−3 V m N−1), a large electrostriction coefficient Q33, and low acoustic impedance z0, far beyond that of PZT and PVDF.  相似文献   

16.
The visible-light-driven photoreduction of CO2 to value-added chemicals over metal-free photocatalysts without sacrificial reagents is very interesting, but challenging. Herein, we present amide-bridged conjugated organic polymers (amide-COPs) prepared via self-condensation of amino nitriles in combination with hydrolysis, for the photoreduction of CO2 with H2O without any photosensitizers or sacrificial reagents under visible light irradiation. These catalysts can afford CO as the sole carbonaceous product without H2 generation. Especially, amide-DAMN derived from diaminomaleonitrile exhibited the highest activity for the photoreduction of CO2 to CO with a generation rate of 20.6 μmol g−1 h−1. Experiments and DFT calculations confirmed cyano/amide groups as active sites for CO2 reduction and second amine groups for H2O oxidation, and suggested that superior selectivity towards CO may be attributed to the adjacent redox sites. This work presents a new insight into designing photocatalysts for artificial photosynthesis.

Amino nitrile-derived conjugated organic polymers can realize the photoreduction of CO2 with water to CO without H2 generation efficiently.  相似文献   

17.
Nitric oxide (NO) is an important signaling molecule in biological systems, and as such, the ability of porous materials to reversibly adsorb NO is of interest for potential medical applications. Although certain metal–organic frameworks are known to bind NO reversibly at coordinatively unsaturated metal sites, the influence of the metal coordination environment on NO adsorption has not been studied in detail. Here, we examine NO adsorption in the frameworks Co2Cl2(bbta) (H2bbta = 1H,5H-benzo(1,2-d:4,5-d′)bistriazole) and Co2(OH)2(bbta) using gas adsorption, infrared spectroscopy, powder X-ray diffraction, and magnetometry. At room temperature, NO adsorbs reversibly in Co2Cl2(bbta) without electron transfer, with low temperature data supporting spin-crossover of the NO-bound cobalt(ii) centers of the material. In contrast, adsorption of low pressures of NO in Co2(OH)2(bbta) is accompanied by charge transfer from the cobalt(ii) centers to form a cobalt(iii)–NO adduct, as supported by diffraction and infrared spectroscopy data. At higher pressures of NO, characterization data indicate additional uptake of the gas and disproportionation of the bound NO to form a cobalt(iii)–nitro (NO2) species and N2O gas, a transformation that appears to be facilitated by secondary sphere hydrogen bonding interactions between the bound NO2 and framework hydroxo groups. These results provide a rare example of reductive NO binding in a cobalt-based metal–organic framework, and they demonstrate that NO uptake can be tuned by changing the primary and secondary coordination environment of the framework metal centers.

Nitric oxide (NO) shows differences in adsorption and reactivity in two related cobalt(ii)–triazolate frameworks, demonstrating how the primary and secondary coordination sphere of metal centers in adsorbents can be designed for targeted delivery.  相似文献   

18.
Reaction of [K(DME)][Th{N(R)(SiMe2CH2)}2(NR2)] (R = SiMe3) with 1 equiv. of [U(NR2)3(NH2)] (1) in THF, in the presence of 18-crown-6, results in formation of a bridged uranium–thorium nitride complex, [K(18-crown-6)(THF)2][(NR2)3UIV(μ-N)ThIV(NR2)3] (2), which can be isolated in 48% yield after work-up. Complex 2 is the first isolable molecular mixed-actinide nitride complex. Also formed in the reaction is the methylene-bridged mixed-actinide nitride, [K(18-crown-6)][K(18-crown-6)(Et2O)2][(NR2)2U(μ-N)(μ–κ2-C,N–CH2SiMe2NR)Th(NR2)2]2 (3), which can be isolated in 34% yield after work-up. Complex 3 is likely generated by deprotonation of a methyl group in 2 by [NR2], yielding the new μ-CH2 moiety and HNR2. Reaction of 2 with 0.5 equiv. of I2 results in formation of a UV/ThIV bridged nitride, [(NR2)3UV(μ-N)ThIV(NR2)3] (4), which can be isolated in 42% yield after work-up. The electronic structure of 4 was analyzed with EPR spectroscopy, SQUID magnetometry, and NIR-visible spectroscopy. This analysis demonstrated that the energies of 5f orbitals of 4 are largely determined by the strong ligand field exerted by the nitride ligand.

The heterobimetallic actinide nitride [(NR2)3UV(μ-N)ThIV(NR2)3] (R = SiMe3) has an mJ = 5/2 ground state and its highest energy 5f excited state is primarily 5f-Nnitride σ-antibonding in character.  相似文献   

19.
The redox chemistries of both the bromide oxidation and bromine reduction reactions are studied at single multi-walled carbon nanotubes (MWCNTs) as a function of their electrical potential allowing inference of the electron transfer kinetics of the Br2/Br redox couple, widely used in batteries. The nanotubes are shown to be mildly catalytic compared to a glassy carbon surface but much less as inferred from conventional voltammetry on porous ensembles of MWCNTs where the mixed transport regime masks the true catalytic response.

Schematic of a carbon nanotube impact in bromide solution.

The bromine–bromide redox couple plays an essential role in diverse energy storage devices including hydrogen–bromine, zinc–bromine, quinone–bromine, vanadium–bromide and bromide–polysulphide flow batteries.1–5 The Br2/Br redox couple is attractive as a cathode reaction due to its high standard potential, large solubility of both reagents, high power density and cost efficiency.6 The performance of such devices is generically limited by the thermodynamics and kinetics of the redox couple comprising the battery with fast (‘reversible’) electron transfer is essential. In many cases, including the Br2/Br couple the electrode reaction involves more than one electron as given in the stoichiometric reaction:2Br − 2e ⇄ Br2; E0 = 1.08 V vs. SHEwith, at high bromide concentrations, the possibility of the follow up chemical reaction7Br2 + Br ⇄ Br3Since electrons are usually transferred sequentially this implies that the mechanism is multistep with any of the individual mechanistic steps in principle being rate limiting. For this reason catalysts are commonly required to enhance the electrode kinetics at otherwise favourable electrode materials. One type of catalyst which has seen wide usage, including for the Br2/Br couple8,9 are carbon nanotubes (CNTs) with suggested advantages which include high surface area and the inherent porosity of CNT composites.10 The deployment of CNTs as a porous composite presents a further level of complexity to the electrode reaction beyond its multistep character because of the ill-defined mass transport within the porous layer. In particular ascertaining the intrinsic electron transfer kinetics and hence the level of catalysis, if any, is essentially impossible since these are masked in the voltammetric response by diffusional mass transport effects.11–14 Specifically the transport within the porous structure of CNT layers is dominated by thin-layer and other15,16 effects which give the illusion of electrochemical reversibility. In order to unscramble possible electro-catalysis of the bromine/bromide couple a different approach is needed.In the following we study both the electro-oxidation of bromide (BOR) and the electro-reduction of bromine (BRR) at single MWCNTs via ‘nano-impact (aka ‘single entity’) electrochemistry’17–20 in aqueous solution. In this approach a micro-wire electrode at a fixed potential is inserted in a suspension of CNTs in the solution of interest. From time to time a single CNT impacts the electrode, adopts the potential of the latter for the duration of the impact which in the case of CNTs can vary from 1–100 of seconds21–23 and sustained catalytic currents flow if the oxidation/reduction of interest is faster at the nanotube in comparison with the micro-wire electrode. The catalytic currents are studied as a function of potential revealing the electron transfer kinetics. Fig. 1 shows the concept of the experiment.Open in a separate windowFig. 1Schematic representation of ‘nano-impact’ electrochemistry on a carbon micro wire electrode for the oxidation of aqueous bromide from which the kinetics of the BOR are inferred. Analogous experiments but showing negative impact currents allow the inference of the kinetics of the BRR.The BOR and BRR were studied first, however, voltammetrically at an unmodified glassy carbon (GC) electrode as shown in Fig. 2 (black line) using 5.0 mM solutions of either NaBr or Br2 in 0.1 M HNO3. The midpoint potential was 0.82 V versus the saturated calomel electrode (SCE) consistent with the literature values for the formal potential of the Br2/Br couple.24 The voltammograms were analysed to give transfer coefficients of 0.45 ± 0.01 and 0.33 ± 0.01 (ESI, Section 2) for the BOR and BRR respectively. Both processes were inferred to be diffusional and the diffusion coefficients DBr and DBr2 were calculated to be 2.05 (±0.04) × 10−5 cm2 s−1 and 1.50 (±0.04) × 10−5 cm2 s−1 (ESI, Section 3) using the Randles–Ševčík equation for an irreversible reaction the values are consistent with literature reports.24 Then the electrodes were modified with 30 μg of MWCNTs consisting of ca. 125 monolayers (the calculation is given in the ESI, Section 9) of MWCNTs assuming that they are closely packed across the area of the GC electrode, and the resulting voltammograms are shown in Fig. 2 (red line). In comparison with the unmodified electrode, enhanced currents are seen for the Br2/Br couple which partly reflects the enhanced capacitance of the interface reflecting in turn the large surface area of the deposited nanotubes (ca. 60–120 cm2). Larger signals are also seen indicating a thin layer contribution from the material occluded within the porous layer which also leads to the apparently quasi-reversible shape of the voltammograms obtained for both reactions. A log–log plot of peak current (Ip) vs. scan rate (ν) showed a gradient value of 0.68 (±0.01) and 0.66 (±0.03) for the BOR and BRR (ESI, Section 4) confirming a mixed mass transport regime12,14 with a combination of semi-infinite diffusion and thin layer behaviour. The transition from the fully irreversible to the apparent quasi-reversible character is sometimes confused with electro-catalysis attributed to the CNTs rather than thin-layer diffusion. In order to ascertain the true catalytic response, single entity electrochemistry was measured to obtain the BOR and BRR responses at single CNTs.Open in a separate windowFig. 2Cyclic voltammograms at pristine GC (black line) and 30 μg MWCNTs dropcast on GC (red line) at a scan rate of 0.05 V s−1 (a) for the bromide oxidation reaction (BOR) in 5.0 mM NaBr in 0.1 M HNO3, (b) for the bromine reduction reaction (BRR) in 5.0 mM bromine in 0.1 M HNO3.For single entity measurements, a clean carbon wire (CWE, length 1 mm and diameter 7 μm) working electrode was used. Chronoamperograms were recorded at a constant applied potential of 0.2 V vs. SCE and 1.3 V vs. SCE for the BOR and BRR respectively (5.0 mM solutions). These values were selected in the light of Fig. 2 to provide a large overpotential for each reaction. Clear oxidative and reductive current steps were observed (Fig. 3). These were ascribed to the arrival of a MWCNT at the electrode surface and the resulting catalytic electron transfer for the duration of the impact. No steps were observed in the absence of MWCNTs (ESI, Fig. S4). The average residence time of the MWCNT was 1.2 (±0.5) seconds and the frequency of the collisions was 0.3 (±0.1) impacts per second. The average impact current for the BOR at 1.3 V vs. SCE was 2.8 (±0.2) nA (65 impacts) and for the BRR at 0.2 V vs. SCE it was 3.8 (±0.1) nA (70 impacts). The impact currents were assumed to be entirely faradaic since control experiments in 0.1 M HNO3 solution in the presence of 100 μg of MWCNTs (in the absence of Br and Br2) showed no obvious impacts as shown in ESI Section 10.Open in a separate windowFig. 3Chronoamperograms showing the impact step current (a) for the BOR in 5.0 mM NaBr in 0.1 M HNO3 at 1.3 V vs. SCE, (b) for the BRR in 5.0 mM bromine in 0.1 M HNO3 at 0.2 V vs. SCE.Further, impacts for both the BOR and BRR were observed at various potentials (ESI, Section 11) and analysed to obtain the average faradaic current at each potential. The average impact step current was plotted against the applied potential (Fig. 4). Two sigmoidal curves were obtained reflecting the current–potential response for either the bromide oxidation (BOR) or the bromine reduction (BRR). The curves reflect the average voltammograms (current–potential characteristics) for the Br2/Br redox reaction at single carbon nanotubes. The shape of the two sigmoidal curves reflects the onset of electrolysis followed by a diffusion controlled plateau at high over-potentials.25 Mass transport corrected Tafel analysis (Fig. 4; inset) showed the transfer coefficients β to be ca. 0.42 and α to be ca. 0.20 from the impacts for the BOR and BRR respectively (ESI, Section 6). The length distribution of the MWCNTs was calculated (ESI, Section 6) from the currents recorded at potentials corresponding to the plateau in Fig. 4 assuming that the reactions are (Fickian) diffusion controlled at the potentials used and by modelling the CNTs as cylindrical electrodes21 assuming a nanotube radius of 15 (±5) nm and the diffusion coefficients reported above. Chronoamperometry was also conducted for the BOR and BRR in the absence of MWCNTs at 1.3 V and 0.2 V vs. SCE respectively to confirm that no impact currents were contributed by the redox species in the electrolyte (ESI, Section 5). Alongside, chronoamperograms in 0.1 M HNO3 and 100 μg show that the impact current was contributed only by the Br and Br2 redox reaction and the results are shown in the ESI, Section 10.Open in a separate windowFig. 4Average step currents observed as a function of applied potential (a) for the BOR in 5.0 mM NaBr in 0.1 M HNO3 at, (b) for the BRR in 5.0 mM Bromine in 0.1 M HNO3; insets in both the cases show mass transport corrected Tafel analyses.The lengths were found to be 5.4 (±3.4) μm (BOR) and 5.9 (±1.3) μm (BRR) and are given in Fig. 5 (see ESI, Section 7 for calculations). These values were compared with previously reported dark-field optical microscopy data and good agreement was observed with the literature value of 5.3 (±2.1) μm.26 The observed consistency provides strong support for the choice of modelling the single entity voltammetry by analogy with that of a cylindrical electrode.Open in a separate windowFig. 5The length of MWCNTs calculated from the impact currents for the BOR (at 1.3 V vs. SCE) and BRR (at 0.2 V vs. SCE).It is evident that the single entity measurements allow a clear analysis of the catalytic behaviour of the carbon nanotubes by providing a well-defined diffusional regime conducive to the extraction of the electrode kinetics of both the bromide oxidation and the bromine reduction process. In contrast, electrodes were formed by ensembles of carbon nanotubes in the form of a porous layer where the mixed transport regime is not amenable to ready modelling and the dissection of thin-layer effects from the measured voltammetry. The electron transfer kinetics for both the BOR and BRR at single MWCNTs was then obtained via full simulation of the two single entity ‘voltammograms’ using the above measured diffusion coefficients and again treating the impacted MWCNT as a cylindrical electrode with uniform diffusional access and further assuming Butler–Volmer kinetics. For the BOR, one electron transfer was considered as given below,For the BRR the two electron transfer was modelled as,Br2 + 2e → 2BrThe set of parameters used for the analysis are given in the ESI, Section 8. By using the transfer coefficients deduced from Fig. 4, the only unknown is the standard electrochemical rate constant k which is determined by fitting the impact voltammogram measured relative to a formal potential for the Br2/Br couple of 0.82 V vs. SCE obtained from the voltammogram at pristine GC. Fig. 6 shows the fitting for the BOR and the BRR with rate constants kBOR of 1.0 (±0.1) × 10−3 cm s−1 and kBRR of 5.0 (±0.1) × 10−4 cm s−1 respectively. The transfer coefficients and rate constants obtained from impacts were compared to the voltammograms obtained at pristine GC for the BOR and BRR and are given in Open in a separate windowFig. 6DIGISIM simulated curves (black line) for average impact currents obtained at different potentials (red circles) (a) for the BOR with a rate constant (kBOR) of 1.0 (±0.1) × 10−3 cm s−1; (b) BRR with a kBRR of 5.0 (±0.1) × 10−4 cm s−1.Transfer coefficients and rate constants for the BOR in 5.0 mM NaBr in 0.1 M HNO3 and the BRR in 5.0 mM bromine in 0.1 M HNO3 obtained at the glassy carbon macroelectrode GC, and single MWCNT impact current
Analysed parameterOxidation of bromideReduction of bromine
Transfer coefficient (GC)β = 0.45α = 0.33
Transfer coefficient (impact current)β = 0.42α = 0.20
kBOR/cm s−1 (GC)9.5 (±0.1) × 10−52.0 (±0.1) × 10−5
kBRR/cm s−1 (impact current)1.0 (±0.1) × 10−35.0 (±0.1) × 10−4
Open in a separate windowIn summary, MWCNTs were studied for their catalytic behaviour towards the Br2/Br redox couple. From the drop-cast experiment, the ensemble of MWCNTs showed mixed mass transport behaviour complicating and precluding the elucidation of their catalytic behaviour. In contrast, single nano-impact electrochemistry of MWCNTs shows faster electrochemical rate constants compared to pristine GC. This confirms the catalytic activity of MWCNTs for the Br2/Br redox reaction but the values determined are insufficiently enhanced over glassy carbon leaving considerable room for improvement via the use of alternative electrocatalysts to carbon nanotubes.  相似文献   

20.
A tetra(o-tolyl) (μ-hydrido)diborane(4) anion 1, an analogue of [B2H5] species, was facilely prepared through the reaction of tetra(o-tolyl)diborane(4) with sodium hydride. Unlike common sp2–sp3 diborane species, 1 exhibited a σ-B–B bond nucleophilicity towards NHC-coordinated transition-metal (Cu, Ag, and Au) halides, resulting in the formation of η2-B–B bonded complexes 2 as confirmed by single-crystal X-ray analyses. Compared with 1, the structural data of 2 imply significant elongations of B–B bonds, following the order Au > Cu > Ag. DFT studies show that the diboron ligand interacts with the coinage metal through a three-center-two-electron B–M–B bonding mode. The fact that the B–B bond of the gold complex is much prolonged than the related Cu and Ag compounds might be ascribed to the superior electrophilicity of the gold atom.

A tetra(o-tolyl)(μ-hydrido)diborane(4) anion is facilely prepared via the reaction of tetra(o-tolyl)diborane(4) with NaH. It exhibits a σ-B–B bond nucleophilicity towards NHC-metal halides to give the corresponding η2-B–B bonded metal complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号