首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new catalytic method for the direct alkylation of allylic C(sp3)–H bonds from unactivated alkenes via synergistic organo- and photoredox catalysis is described. The transformation achieves an efficient, redox-neutral synthesis of homoallylamines with broad functional group tolerance, under very mild reaction conditions. Mechanistic investigations indicate that the reaction proceeds through the N-centered radical intermediate which is generated by the allylic radical addition to the imine.

A new catalytic method for the direct alkylation of allylic C(sp3)–H bonds from unactivated alkenes via synergistic organo- and photoredox catalysis is described.  相似文献   

2.
A novel peri-annulated heterocyclic system of 1,2-dihydrobenz[6,7]oxepino[4,3,2-cd]indole was prepared starting from TNT via 4,6-dinitro-1-tosylindoline as a key intermediate. Base-induced CC bond shift in 1,2-dihydrobenz[6,7]oxepino[4,3,2-cd]indoles affords isomeric 2,11-dihydrobenz[6,7]oxepino[4,3,2-cd]indoles.  相似文献   

3.
Masahiro Anada 《Tetrahedron》2009,65(16):3069-942
The reaction of silyl enol ethers derived from cyclohexanone with [(4-nitrophenylsulfonyl)imino]phenyliodinane (pNsNIPh) catalyzed by dirhodium(II) tetrakis[N-tetrachlorophthaloyl-(S)-tert-leucinate], Rh2(S-TCPTTL)4, provides, after desilylation, N-pNs-protected (S)-β-aminocyclohexanone in up to 72% ee. This represents the first example of the insertion of nitrene species into an allylic C-H bond of silyl enol ethers. Using this process, a new catalytic asymmetric route to an advanced intermediate in Overman's synthesis of the montanine-type Amaryllidaceae alkaloid (−)-pancracine has been developed. The key steps involve (a) a one-pot Rh2(R-TCPTTL)4-catalyzed sequential 1,4-hydrosilylation/enantioselective C-H amination of 2-cyclohexen-1-one, (b) N-alkylation and subsequent intramolecular Mukaiyama aldol reaction/dehydration, and (c) a regio- and stereocontrolled reductive deoxygenation of bicyclic enone 27 with migration of the double bond to create the C1/C11a double bond and the stereogenic center at C11 of 3-arylhexahydroindole 31.  相似文献   

4.
The first enantioselective total synthesis of a neurotrophic (−)-talaumidin (1) is described in 16 steps from 4-benzyloxy-3-methoxybenzaldehyde in ca. 10.7% overall yield, and thus has established the absolute configurations of the four stereogenic centers C-2 ∼ C-5 of 1. The synthesis features the construction of the two successive chiral centers C-2 and C-3 by Evans asymmetric anti-aldol protocol as well as of the two chiral centers C-4 and C-5 in a highly stereocontrolled fashion by hydroboration/oxidation and epimerization, followed by Friedel-Crafts arylation.  相似文献   

5.
Anomalous syn-diastereoselectivity of indium-mediated coupling of aldehydes with bromides Z-3b and E-3b is reported. The reaction afforded high syn selectivity regardless of the allylic bromide geometry. Preliminary studies on the enantioselective indium-mediated allylation were attempted and found to give the desired products in moderate yield with high syn selectivity and enantioselectivity.  相似文献   

6.
Benzylic/allylic alcohols are converted via site-selective C(sp2)–C(sp3) cleavage to value-added nitrogenous motifs, viz., anilines and/or nitriles as well as N-heterocycles, utilizing commercial hydroxylamine-O-sulfonic acid (HOSA) and Et3N in an operationally simple, one-pot process. Notably, cyclic benzylic/allylic alcohols undergo bis-functionalization with attendant increases in architectural complexity and step-economy.

Benzylic/allylic alcohols are converted via site-selective C(sp2)–C(sp3) cleavage to value-added nitrogenous motifs, viz., anilines and/or nitriles as well as N-heterocycles, utilizing commercial hydroxylamine-O-sulfonic acid (HOSA) and Et3N in an operationally simple, one-pot process.  相似文献   

7.
Concise and efficient enantioselective total syntheses of heliannuols B and D have been accomplished using chirality transfer through a Lewis acid-promoted Claisen rearrangement for the construction of the C7 tertiary stereogenic center and a relay ring-closing metathesis for assembling the dihydrobenzo[b]oxepine backbone of the natural products as the key steps.  相似文献   

8.
Methods that enable the rapid construction of multiple C–C bonds using a single catalyst with high diastereo- and enantio-control are particularly valuable in organic synthesis. Here, we report an Ir-catalyzed double allylic alkylation reaction in which bisnucleophilic cyanoacetate reacted successionally with electrophilic π-allyl-Ir species, producing various pseudo-C2-symmetrical cyanoacetate derivatives in high yield with excellent stereocontrol. More challenging sequential allylic alkylation/allylic alkylation with two distinct allylic carbonates that can deliver the corresponding products bearing three contiguous tertiary–quaternary–tertiary stereocenters was also developed by using a modified catalytic system, which is revealed to be associated with the quasi-dynamic kinetic resolution of the initially formed diastereomeric monoallylation intermediates. Notably, stereodivergence for this sequential process depending on a single iridium catalyst was successfully realized, and up to six stereoisomers could be predictably prepared by combining the appropriate enantiomer of the chiral ligand for the iridium catalyst and adjusting the adding sequence of two distinct allylic precursors.

Ir-catalyzed asymmetric double AAA reaction of cyanoacetate was developed, affording cyanoacetate derivatives in high yield with excellent stereocontrol. Notably, quasi-DKR is involved in the sequential protocol with two distinct allylic carbonates.  相似文献   

9.
Described are the first examples of Lewis acid-promoted Diels–Alder reactions of vinylpyridines and other vinylazaarenes with unactivated dienes. Cyclohexyl-appended azaarenes constitute a class of substructures of rising prominence in drug discovery. Despite this, thermal variants of the vinylazaarene Diels–Alder reaction are rare and have not been adopted for synthesis, and Lewis acid-promoted variants are virtually unexplored. The presented work addresses this gap and in the process furnishes increased scope, dramatically higher yields, improved regioselectivity, and high levels of diastereoselectivity compared to prior thermal examples. These reactions provide scalable access to druglike scaffolds not readily available through other methods. More broadly, these studies establish a useful new class of dienophiles that, based on preliminary mechanistic studies, should be amenable to conventional strategies for enantioselective catalysis.

Vinyl-substituted azaarenes are rare and challenging substrates as dienophiles in Diels–Alder reactions; by employing Lewis acid activation, high yielding and highly selective cycloadditions with unactivated dienes are enabled.  相似文献   

10.
Herein, a readily available disilane Me3SiSiMe2(OnBu) has been developed for the synthesis of diverse silacycles via Brook- and retro-Brook-type rearrangement. This protocol enables the incorporation of a silylene into different starting materials, including acrylamides, alkene-tethered 2-(2-iodophenyl)-1H-indoles, and 2-iodobiaryls, via the cleavage of Si–Si, Si–C, and Si–O bonds, leading to the formation of spirobenzosiloles, fused benzosiloles, and π-conjugated dibenzosiloles in moderate to good yields. Preliminary mechanistic studies indicate that this transformation is realized by successive palladium-catalyzed bis-silylation and Brook- and retro-Brook-type rearrangement of silane-tethered silanols.

A readily available disilane Me3SiSiMe2(OnBu) as a silylene source has been developed for the synthesis of diverse silacycles via Brook- and retro-Brook-type rearrangement.  相似文献   

11.
Herein, we present a facile and efficient allylation method via Ni-catalyzed cross-electrophile coupling of readily available allylic acetates with a variety of substituted alkenyl bromides using zinc as the terminal reductant. This Ni-catalyzed modular approach displays excellent functional group tolerance and a broad substrate scope, which the creation of a series of 1,4-dienes including several structurally complex natural products and pharmaceutical motifs. Moreover, the coupling strategy has the potential to realize enantiomeric control. The practicality of this transformation is demonstrated through the potent modification of the naturally antitumor active molecule β-elemene.

Herein, we present a facile and efficient allylation method via Ni-catalyzed cross-electrophile coupling of readily available allylic acetates with a variety of substituted alkenyl bromides using zinc as the terminal reductant.  相似文献   

12.
Unprotected 2-acetamido sugars may be directly converted into their oxazolines using 2-chloro-1,3-dimethylimidazolinium chloride (DMC), and a suitable base, in aqueous solution. Freeze drying and acid catalysed reaction with an alcohol as solvent produces the corresponding 1,2-trans-glycosides in good yield. Alternatively, dissolution in an aprotic solvent system and acidic activation in the presence of an excess of an unprotected glycoside as a glycosyl acceptor, results in the stereoselective formation of the corresponding 1,2-trans linked disaccharides without any protecting group manipulations. Reactions using aryl glycosides as acceptors are completely regioselective, producing only the (1→6)-linked disaccharides.

Un-protected 2-acetamido sugars are stereoselectively converted into 1,2-trans glycosides and (1→6)-linked disaccharides without any protecting groups. Reaction proceeds via intermediate oxazolines which react with acceptors under acid catalysis.  相似文献   

13.
Catalytic difunctionalization of 1,3-enynes represents an efficient and versatile approach to rapidly assemble multifunctional propargylic compounds, allenes and 1,3-dienes. Controlling selectivity in such addition reactions has been a long-standing challenging task due to multiple reactive centers resulting from the conjugated structure of 1,3-enynes. Herein, we present a straightforward method for regiodivergent sulfonylarylation of 1,3-enynes via dual nickel and photoredox catalysis. Hinging on the nature of 1,3-enynes, diverse reaction pathways are feasible: synthesis of α-allenyl sulfones via 1,4-sulfonylarylation, or preparation of (E)-1,3-dienyl sulfones with high chemo-, regio- and stereoselectivity through 3,4-sulfonylarylation. Notably, this is the first example that nickel and photoredox catalysis are merged to achieve efficient and versatile difunctionalization of 1,3-enynes.

A mild reaction protocol for regiodivergent sulfonylarylation of 1,3-enynes via dual nickel and photoredox catalysis has been developed, which led to efficient synthesis of α-allenyl sulfones or 1,3-dienyl sulfones.  相似文献   

14.
Efficient asymmetric synthesis of a collection of small molecules with structural diversity is highly important to drug discovery. Herein, three distinct types of chiral cyclic compounds were accessible by enantioselective catalysis and sequential transformations. Highly regio- and enantioselective [2+2] cycloaddition of (E)-alkenyloxindoles with the internal C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bond of N-allenamides was achieved with N,N′-dioxide/Ni(OTf)2 as the catalyst. Various optically active spirocyclobutyl oxindole derivatives were obtained under mild conditions. Moreover, formal [4+2] cycloaddition products occurring at the terminal C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bond of N-allenamides, dihydropyran-fused indoles, were afforded by a stereospecific sequential transformation with the assistance of a catalytic amount of Cu(OTf)2. In contrast, performing the conversion under air led to the formation of γ-lactones via the water-involved deprotection and rearrangement process. Experimental studies and DFT calculations were performed to probe the reaction mechanism.

Three distinct types of chiral cyclic compounds were accessible by catalytic asymmetric synthesis of spirocyclobutyl oxindoles via [2+2] cycloaddition and sequential transformations.  相似文献   

15.
A strategy for overcoming the limitation of the Morita–Baylis–Hillman (MBH) reaction, which is only applicable to electron-deficient olefins, has been achieved via visible-light induced photoredox catalysis in this report. A series of non-electron-deficient olefins underwent the MBH reaction smoothly via a novel photoredox-quinuclidine dual catalysis. The in situ formed key β-quinuclidinium radical intermediates, derived from the addition of olefins with quinuclidinium radical cations, are used to enable the MBH reaction of non-electron-deficient olefins. On the basis of previous reports, a plausible mechanism is suggested. Mechanistic studies, such as radical probe experiments and density functional theory (DFT) calculations, were also conducted to support our proposed reaction pathways.

A strategy for overcoming the limitation of the Morita–Baylis–Hillman (MBH) reaction, which is only applicable to electron-deficient olefins, has been achieved via visible-light induced photoredox catalysis in this report.  相似文献   

16.
The Pd-catalysed asymmetric allylic alkylation (Pd-AAA) of prochiral enamide anions derived from 5H-oxathiazole 2,2-dioxides has been developed. Various 4,5-disubstituted and 4-substituted cyclic sulfamidate imines have participated in the transformation with a range of allyl carbonates—as well as 2-vinyl oxirane, 2-vinyl-N-tosylaziridine, and 2-vinyl-1,1-cyclopropane dicarboxylate—to furnish the desired C-allylated products in moderate to high yields, with high regioselectivites and generally high enantioselectivities. Conversion between N- and C-allyl products was observed, with the N-allylated products converting to the C-allylated products over time. The resulting high-value allylated heterocyclic products all bear a tetrasubstituted stereogenic centre and can be reduced to an allylated chiral sulfamidate or an amino alcohol.

The Pd-catalysed asymmetric allylic alkylation (Pd-AAA) of prochiral enamide anions derived from 5H-oxathiazole 2,2-dioxides has been developed.  相似文献   

17.
Pyrido[1,2-a]-1H-indoles are important scaffolds found in many biologically active compounds. Herein, we first developed an IPrAuCl/AgSbF6-catalyzed cycloisomerization of N-1,3-disubstituted allenyl indoles affording pyrido[1,2-a]-1H-indoles. Then the axial-to-central chirality transfer starting from enantio-enriched N-1,3-disubstituted allenylindoles affording optically active pyrido[1,2-a]-1H-indoles has been realized in excellent yields and enantioselectivities. A mechanism has been proposed based on mechanistic studies. Synthetic applications have also been demonstrated.

We reported an IPrAuCl/AgSbF6-catalyzed cycloisomerization of enantio-enriched N-1,3-disubstituted allenylindoles affording optically active pyrido[1,2-a]-1H-indoles in excellent yields and enantioselectivities.  相似文献   

18.
Total synthesis of the natural d-ribo-phytosphingosine I and its 2-epimer III in the protected form was achieved through a common strategy. The aza-Claisen rearrangement of allylic thiocyanate (Z)-V incorporated the new stereogenic centre with nitrogen and the subsequent Wittig olefination constructed a non-polar side chain. Hydrogenation, followed by removal of protecting groups, completed the syntheses of I and III.  相似文献   

19.
The highly α-regioselective N-nucleophilic substitution of B-H adducts bearing five (1a-f) or six-membered ring (5a-e) moieties with aromatic amines (2a-e) was developed under the catalysis of In(OTf)3 (10 mol%). During the reaction the allylic rearrangement from γ-product to α-product occurred, resulting in thermodynamically stable α-product predominately.  相似文献   

20.
Transition-metal-catalyzed enantioselective C–H functionalization has emerged as a powerful tool for the synthesis of enantioenriched compounds in chemical and pharmaceutical industries. Sulfur-based functionalities are ubiquitous in many of the biologically active compounds, medicinal agents, functional materials, chiral auxiliaries and ligands. This perspective highlights recent advances in sulfur functional group enabled transition-metal-catalyzed enantioselective C–H functionalization for the construction of sulfur stereogenic centers, as well as the utilization of chiral sulfoxides to realize stereoselective C–H functionalization.

This perspective highlights sulfur functional groups enabled enantioselective C–H functionalization for the construction of sulfur stereogenic centers, and the utilization of chiral sulfoxide to realize stereoselective C–H functionalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号