首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
In order to obtain crystals of fullerene oxides that are suitable for single-crystal X-ray diffraction, the reactions between C(60)O and Vaska type iridium complexes have been examined. While reaction with Ir(CO)Cl(P(C(6)H(5))(3))(2)(and with triphenylphosphine but not triphenylarsine) results in partial deoxygenation of the fullerene epoxide, reaction with Ir(CO)Cl(As(C(6)H(5))(3))(2)()()produces crystalline (eta(2)-C(60)O)Ir(CO)Cl(AsPh(3))(2).4.82C(6)H(6).0.18CHCl(3). Black triangular prisms of (eta(2)-C(60)O)Ir(CO)Cl(AsPh(3))(2).4.82C(6)H(6).0.18CHCl(3)form in the monoclinic space group P2(1)/n with a = 14.662(2) ?, b = 19.836(2) ?, c = 28.462(5) ?, and beta = 100.318(12) degrees at 123 (2) K with Z = 4. Refinement (on F(2)) of 10 472 reflections and 1095 parameters with 10 restraints yielded wR2 = 0.152 and a conventional R = 0.066 (for 7218 reflections with I > 2.0sigma(I)). The structure shows that the iridium complex is bound to a 6:6 ring junction of the fullerene with four partially occupied sites for the epoxide oxygen atom. Thus, while deoxygenation of the fullerene does not occur upon reaction with Ir(CO)Cl(AsPh(3))(2), there is a greater degree of disorder in (eta(2)-C(60)O)Ir(CO)Cl(AsPh(3))(2)than previously reported for (eta(2)-C(60)O)Ir(CO)Cl(PPh(3))(2).  相似文献   

2.
Extensive semiempirical calculations of the hexaanions of IPR (isolated pentagon rule) and non-IPR isomers of C(68)-C(88) and IPR isomers of C(90)-C(98) followed by DFT calculations of the lowest energy structures were performed to find the carbon cages that can provide the most stable isomers of M(3)N@C(2n) clusterfullerenes (M = Sc, Y) with Y as a model for rare earth ions. DFT calculations of isomers of M(3)N@C(2n) (M = Sc, Y; 2n = 68-98) based on the most stable C(2n)(6-) cages were also performed. The lowest energy isomers found by this methodology for Sc(3)N@C(68), Sc(3)N@C(78), Sc(3)N@C(80), Y(3)N@C(78), Y(3)N@C(80), Y(3)N@C(84), Y(3)N@C(86), and Y(3)N@C(88) are those that have been shown to exist by single-crystal X-ray studies as Sc(3)N@C(2n) (2n = 68, 78, 80), Dy(3)N@C(80), and Tb(3)N@C(2n) (2n = 80, 84, 86, 88) clusterfullerenes. Reassignment of the carbon cage of Sc(2)@C(76) to the non-IPR Cs: 17490 isomer is also proposed. The stability of nitride clusterfullerenes was found to correlate well with the stability of the empty 6-fold charged cages. However, the dimensions of the cage in terms of its ability to encapsulate M(3)N clusters were also found to be an important factor, especially for the medium size cages and the large Y(3)N cluster. In some cases the most stable structures are based on the different cage isomers for Sc(3)N and Y(3)N clusters. Up to the cage size of C(84), non-IPR isomers of C(2n)(6-) and M(3)N@C(2n) were found to compete with or to be even more stable than IPR isomers. However, the number of adjacent pentagon pairs in the most stable non-IPR isomers decreases as cage size increases: the most stable M(3)N@C(2n) isomers have three such pairs for 2n = 68-72, two pairs for n = 74-80, and only one pair for n = 82, 84. For C(86) and C(88) the lowest energy IPR isomers are much more stable than any non-IPR isomer. The trends in the stability of the fullerene isomers and the cluster-cage binding energies are discussed, and general rules for stability of clusterfullerenes are established. Finally, the high yield of M(3)N@C(80) (Ih) clusterfullerenes for any metal is explained by the exceptional stability of the C(80)(6-) (Ih: 31924) cage, rationalized by the optimum distribution of the pentagons leading to the minimization of the steric strain, and structural similarities of C(80) (Ih: 31924) with the lowest energy non-IPR isomers of C(760(6-), C(78)(6-), C(82)(6-), and C(84)(6-) pointed out.  相似文献   

3.
The smallest fullerene to form in condensing carbon vapor has received considerable interest since the discovery of Buckminsterfullerene, C(60). Smaller fullerenes remain a largely unexplored class of all-carbon molecules that are predicted to exhibit fascinating properties due to the large degree of curvature and resulting highly pyramidalized carbon atoms in their structures. However, that curvature also renders the smallest fullerenes highly reactive, making them difficult to detect experimentally. Gas-phase attempts to investigate the smallest fullerene by stabilization through cage encapsulation of a metal have been hindered by the complexity of mass spectra that result from vaporization experiments which include non-fullerene clusters, empty cages, and metallofullerenes. We use high-resolution FT-ICR mass spectrometry to overcome that problem and investigate formation of the smallest fullerene by use of a pulsed laser vaporization cluster source. Here, we report that the C(28) fullerene stabilized by encapsulation with an appropriate metal forms directly from carbon vapor as the smallest fullerene under our conditions. Its stabilization is investigated, and we show that M@C(28) is formed by a bottom-up growth mechanism and is a precursor to larger metallofullerenes. In fact, it appears that the encapsulating metal species may catalyze or nucleate endohedral fullerene formation.  相似文献   

4.
分别用MNDO和AM1两种半经验方法,对C59F2nHN (n = 1, 2) 的异构体进行几何构型全优化,结合频率分析及HF/6-31G单点能计算,确定了各异构体的基态结构及其相对稳定性。计算结果表明,C59HN的F加成物的立体选择性规律与C60的不同,最稳定异构体不是1-2加成物。C59F2HN的最稳定异构体是1-4加成的6, 18-或12, 15-异构体; C59F4HN的最稳定异构体是1-4,1-4加成的6, 18; 12, 15-异构体,其能量远小于其它各异构体的能量。N原子取代碳笼骨架C原子后,改变了碳笼F加成物的立体选择性规律。  相似文献   

5.
A new family of endohedral fullerenes, based on an encaged trithulium nitride (Tm(3)N) cluster, was synthesised, isolated and characterised by HPLC, mass spectrometry, and visible-NIR and FTIR spectroscopy. Tm(3)N clusterfullerenes with cages as small as C(76) and as large as C(88) were prepared and six of them were isolated. Tm(3)N@C(78) is a small clusterfullerene. The two isomers of Tm(3)N@C(80) (I and II) were the most abundant structures in the fullerene soot. Tm(3)N@C(82), Tm(3)N@C(84), and Tm(3)N@C(86) represent a new series of higher clusterfullerenes. All six isolated Tm(3)N clusterfullerenes were classified as large energy-gap structures with optical energy gaps between approximately 1.2 and approximately 1.75 eV. Tm(3)N@C(80) (I) and Tm(3)N@C(80) (II) were assigned to the C(80) cages C(80):7 (I(h)) and C(80):6 (D(5h)). For Tm(3)N@C(78), the analysis pointed to an elliptical carbon cage with C(78):1 (D(3)) or C(78):4 (D(3h)) being the probable structures.  相似文献   

6.
[reaction: see text] tert-Butylperoxy radicals add to [70]fullerene to form a mixture of adducts C(70)(OO(t)()Bu)(n)() (n = 2, 4, 6, 8, 10). Four isomers were isolated for the bis-adduct with the two tert-butylperoxo groups attached at 1,2-, 5,6-, 7,23-, and 2,5-positions, respectively. Two isomers were isolated for the tetrakis-adduct with the tert-butylperoxo groups located along the equator in C(s)() symmetry and on the side in C(1) symmetry, respectively. Similarly, two isomers were isolated for the hexakis-adducts with a structure related to the tetrakis-adducts, one of which has the cyclopentadienyl substructure. No isomer was detected for the octakis- and decakis-adducts. The C(s)()-symmetric octakis- and C(2)-symmetric decakis-adducts have all the tert-butylperoxo groups located along the equator. The decakis-adduct is the major product under optimized conditions. The compounds were characterized by their spectroscopic data. Chemical correlation through further addition of tert-butylperoxy radicals to isolated pure derivatives confirmed the structure assignment. Mechanisms of the tert-butylperoxy radical addition to C(70) follow two pathways: equatorial addition along the belt and cyclopentadienyl addition on the side.  相似文献   

7.
Energetic-radiation-induced dimerization reaction of fullerenes was found to be a simple and highly selective method for synthesis of C2m-X-C2n (m = n or m not equal n) type molecules without formation of other products. Utilizing the new method, C70-C-C70, C60-C-C70, C60-C-C60, and C70-O-C70 were prepared and characterized. The method is capable of synthesizing new C2m-X-C2n molecules by introducing X (different atoms) into the reaction system. Energetic radiation created reactive sites for covalently bonded bridges between fullerene molecules originally only weakly bound by van der Waals force. This observation may open a new subject and practicable approach for polymer sciences of fullerenes.  相似文献   

8.
C(60)-fullerene derivatives are potential building blocks in modular carrier systems for selective tumor targeting. In [5:1] fullerene hexakis adducts, one position can be occupied by an addressing unit (e.g. monoclonal antibody) while the other five positions are suitable for dendrimers or spacers loaded with several drug moieties. This article reports intracellular uptake and phototoxicity of three fullerene hexakis adducts coupled with a different number of photosensitizers: a bis(3(1),3(2)-didehydrophytochlorin)-fullerene [5:1]-hexaadduct (FHP1), a fullerene [5:1]-hexaadduct with six 3(1),3(2)-didehydrophytochlorin groups (FHP6) and a fullerene [6:0]-hexaadduct that carries 12 3(1),3(2)-didehydrophytochlorin units (FHP12). The most promising complex, the hexa-3(1),3(2)-didehydrophytochlorin fullerene hexaadduct FHP6, was also compared with its fullerene-free analogous derivative P6. It was found that the extent of intracellular uptake is influenced by both nanomolecular size and asymmetry (amphiphilicity) of the fullerene complexes. The degree and mechanism of phototoxicity was found to depend on intracellular concentrations and singlet oxygen quantum yields.  相似文献   

9.
The addition of 4.0 equiv of Na(silox) to Na[W(2)Cl(7)(THF)(5)] afforded (silox)(2)ClW&tbd1;WCl(silox)(2) (1, 65%). Treatment of 1 with 2.0 equiv of MeMgBr in Et(2)O provided (silox)(2)MeW&tbd1;WMe(silox)(2) (2, 81%). In the presence of 1 atm of H(2), reduction of 1 with 2.0 equiv of Na/Hg in DME provided (silox)(2)HW&tbd1;WH(silox)(2) (3, 70%), characterized by a hydride resonance at delta 19.69 (J(WH) = 325 Hz, (1)H NMR). Exposure of 2 to 1 atm of H(2) yielded 3 and CH(4) via (silox)(2)HW&tbd1;WMe(silox)(2) (4); use of D(2) led to [(silox)(2)WD](2) (3-d(2)). Exposure of 3 to ethylene ( approximately 1 atm, 25 degrees C) in hexanes generated (silox)(2)EtW&tbd1;WEt(silox)(2) (5), but solutions of 5 reverted to 3 and free C(2)H(4) upon standing. NMR spectral data are consistent with a sterically locked, gauche, C(2) symmetry for 1-5. Thermolysis of 3 at 100 degrees C (4 h) resulted in partial conversion to (silox)(2)HW&tbd1;W(OSi(t)Bu(2)CMe(2)CH(2))(silox) (6a, approximately 60%) and free H(2), while extended thermolysis with degassing (5 d, 70 degrees C) produced a second cyclometalated rotational isomer, 6b (6a:6b approximately 3:1). When left at 25 degrees C (4 h) in sealed NMR tubes, 6 and free H(2) regenerated 3. Reduction of 1 with 2.0 equiv of Na/Hg in DME also afforded 6a (25%). When 3 was exposed to approximately 3 atm of H(2), equilibrium amounts of [(silox)(2)WH(2)](2) (7) were observed by (1)H NMR spectroscopy (3 + H(2) right harpoon over left harpoon 7; 25.9-88.7 degrees C, DeltaH = -9.6(4) kcal/mol, DeltaS = -21(2) eu). Benzene solutions of 3 and 1-3 atm of D(2) revealed incorporation of deuterium into the silox ligands, presumably via intermediate 6. In sealed tubes containing [(silox)(2)WCl](2) (1) and dihydrogen (1-3 atm), (1)H NMR spectral evidence for [(silox)(2)WCl](2)(&mgr;-H)(2) (8) was obtained, suggesting that formation of 3 from 1 proceeded via reduction of 8. Alternatively, 3 may be formed from direct reduction of 1 to give [(silox)(2)W](2) (9), followed by H(2) addition. Hydride chemical shifts for 7 are temperature dependent, varying from delta 1.39 (-70 degrees C, toluene-d(8)), to delta 3.68 (90 degrees C). (29)Si{(1)H} NMR spectra revealed a similar temperature dependence of the silox (delta 12.43, -60 degrees C, to delta 13.64, 45 degrees C) resonances. These effects may arise from thermal population of a low-lying, deltadelta, paramagnetic excited state of D(2)(d)() [(silox)(2)W](2)(&mgr;-H)(4) (DeltaE approximately 2.1 kcal/mol, chi(7a) approximately 0.03), an explanation favored over thermal equilibration with an energetically similar but structurally distinct isomer (e.g., [(silox)(2)WH(2)](2)(&mgr;-H)(2), DeltaG degrees approximately 0.69 kcal/mol, chi(7b) approximately 0.25) on the basis of spectral arguments. Extended Hückel and ab initio molecular orbital calculations on model complexes [(H(3)SiO)(2)W](2)(&mgr;-H)(4) (staggered bridged 7a', EHMO), [(H(3)SiO)(2)WH(2)](2) (all-terminal 7b', EHMO), [(H(3)SiO)(2)W](2) (9', EHMO), (HO)(4)W(2)(H(4)) (staggered-bridged 7", ab initio), and (HO)(4)W(2)(H(4)) (bent-terminal 7, ab initio) generally support the explanation of a thermally accessible excited state and assign 7 a geometry intermediate between the all-terminal and staggered-bridged forms.  相似文献   

10.
The 3465 classical isomers of C(64) fullerene have been investigated by quantum chemical methods PM3, and the most stable isomers have been refined with HCTH/3-21G//SVWN/STO-3G, B3LYP/6-31G(d)//HCTH/3-21G, and B3LYP/6-311G(d)//B3LYP/6-31G(d) level. C(64)(D(2):0003) with the lowest e(55) (e(55) = 2), the number of pentagon-pentagon fusions, is predicted to be the most stable isomer and it is followed by the C(64)(C(s):0077) and C(64)(C(2):0103) isomers within relative energy of 20.0 kcal/mol. C(64)(D(2):0003) prevails in a wide temperature range according to energy analysis with entropy contribution at B3LYP/6-31G(d) level. The simulated IR spectra and electronic spectra help to identify different fullerene isomers. All the hexagons in the isomers with e(55) = 2 display local aromaticity. The relative stabilities of C(64) isomers change with charging in ionic states. Doping also affects the relative stabilities of fullerene isomers as demonstrated by Sc(2)@C(64)(D(2):0003) and Sc(2)@C(64)(C(s):0077). The bonding of Sc atoms with C(64) elongates the C-C bond of two adjacent pentagons and enhances the local aromaticity of the fullerene cages. Charging, doping, and derativization can be utilized to isolate C(64) isomers through differentiating the electronic and steric effects.  相似文献   

11.
A method for the synthesis of the multicomponent ionic complexes: [Cr(I)(C(6)H(6))(2) (.+)][Co(II)(tpp)(fullerene)(-)].C(6)H(4)Cl(2), comprising bis(benzene)chromium (Cr(C(6)H(6))(2)), cobalt(II) tetraphenylporphyrin (Co(II)(tpp)), fullerenes (C(60), C(60)(CN)(2), and C(70)), and o-dichlorobenzene (C(6)H(4)Cl(2)) has been developed. The monoanionic state of the fullerenes has been proved by optical absorption spectra in the UV/vis/NIR and IR ranges. The crystal structures of the ionic [[Cr(I)(C(6)H(6))(2)](.+)](1.7)[[Co(II)(tpp)(C(60))](2)](1.7-). 3.3 C(6)H(4)Cl(2) and [[Cr(I)(C(6)H(6))(2)] (.+)](2)[Co(II)(tpp)[C(60)(CN)(2)]](-)[C(60)(CN)(2) (.-)]).3 C(6)H(4)Cl(2) are presented. The essentially shortened Co.C(fullerene) bond lengths of 2.28-2.32 A in these complexes indicate the formation of sigma-bonded [Co(II)(tpp)][fullerene](-) anions, which are diamagnetic. All the ionic complexes are semiconductors with room temperature conductivity of 2 x 10(-3)-4 x 10(-6) S cm(-1), and their magnetic susceptibilities show Curie-Weiss behavior. The neutral complexes of Co(II)(tpp) with C(60), C(60)(CN)(2), C(70), and Cr(0)(C(6)H(6))(2), as well as the crystal structures of [Co(II)(tpp)](C(60)).2.5 C(6)H(4)Cl(2), [Co(II)(tpp)](C(70)). 1.3 CHCl(3).0.2 C(6)H(6), and [Cr(0)(C(6)H(6))(2)][Co(II)(tpp)] are discussed. In contrast to the ionic complexes, the neutral ones have essentially longer Co.C(fullerene) bond lengths of 2.69-2.75 A.  相似文献   

12.
Ten 1:1 and 2:1 complexes of [Mn(CO)(3)](+) and [Re(CO)(3)](+) with [Nb(6)O(19)](8)(-) and [Ta(6)O(19)](8)(-) have been isolated as potassium salts in good yields and characterized by elemental analysis, (17)O NMR and infrared spectroscopy, and single-crystal X-ray structure determinations. Crystal data for 1 (t-Re(2)Ta(6)): empirical formula, K(4)Na(2)Re(2)C(6)Ta(6)O(35)H(20), monoclinic, space group, C2/m, a = 17.648(3) A, b = 10.056(1) A, c = 13.171(2) A, beta = 112.531(2) degrees, Z = 2. 2 (t-Re(2)Nb(6)): empirical formula, K(6)Re(2)C(6)Nb(6)O(38)H(26), monoclinic, space group, C2/m, a = 17.724(1) A, b = 10.0664(6) A, c = 13.1965(7) A, beta = 112.067(1) degrees, Z = 2. 3 (t-Mn(2)Nb(6)): empirical formula, K(6)Mn(2)C(6)Nb(6)O(37)H(24), monoclinic, space group, C2/m, a = 17.812(2) A, b = 10.098(1) A, c = 13.109(2) A, beta = 112.733(2) degrees, Z = 2. 4 (c-Mn(2)Nb(6)): empirical formula, K(6)Mn(2)C(6)Nb(6)O(50)H(50), triclinic, space group, P1, a = 10.2617(6) A, b = 13.4198(8) A, c = 21.411(1) A, alpha = 72.738(1) degrees, beta = 112.067(1) degrees, gamma = 83.501(1) degrees, Z = 2. 5 (c-Re(2)Nb(6)): empirical formula, K(6)Re(2)C(6)Nb(6)O(54)H(58), monoclinic, space group, P2(1)/c, a = 21.687(2) A, b = 10.3085(9) A, c = 26.780(2) A, beta = 108.787(1) degrees, Z = 4. The complexes contain M(CO)(3) groups attached to the surface bridging oxygen atoms of the hexametalate anions to yield structures of nominal C(3)(v)() (1:1), D(3)(d)() (trans 2:1), and C(2)(v)() (cis 2:1) symmetry. The syntheses are carried out in aqueous solution or by aqueous hydrothermal methods, and the complexes have remarkably high thermal, redox, and hydrolytic stabilities. The Re-containing compounds are stable to 400-450 degrees C, at which point CO loss occurs. The Mn compounds lose CO at temperatures above 200 degrees C. Cyclic voltammetry of all complexes in 0.1 M sodium acetate show no redox behavior, except an irreversible oxidation process at approximately 1.0 V vs. Ag/AgCl. In contrast to the parent hexametalate anions that are stable only in alkaline (pH >10) solution, the new complexes are stable, at least kinetically, between pH 4 and pEta approximately 12.  相似文献   

13.
While the trimetallic nitrides of Sc, Y and the lanthanides between Gd and Lu preferentially template C(80) cages, M(3)N@C(80), and while those of Ce, Pr and Nd preferentially template the C(88) cage, M(3)N@C(88), we show herein that the largest metallic nitride cluster, La(3)N, preferentially leads to the formation of La(3)N@C(96) and to a lesser extent the La(3)N@C(88). This is the first time that La(3)N is successfully encapsulated inside fullerene cages. La(3)N@C(2n) metallofullerenes were synthesized by arcing packed graphite rods in a modified Kr?tschmer-Huffman arc reactor, extracted from the collected soot and identified by mass spectroscopy. They were isolated and purified by high performance liquid chromatography (HPLC). Different arcing conditions were studied to maximize fullerene production, and results showed that yields have a high La(2)O(3)/C dependence. Relatively high yields were obtained when a 1:5 ratio was used. Three main fractions, La(3)N@C(88), La(3)N@C(92), and La(3)N@C(96), were characterized by UV/Vis-NIR and cyclic voltammetry. Unlike other trimetallic nitride metallofullerenes of the same carbon cage size, La(3)N@C(88) exhibits a higher HOMO-LUMO gap and irreversible reduction and oxidation steps.  相似文献   

14.
An investigation of C(36)X(n) (X=F,Cl,Br; n=2,4,6,12) formed from the initial C(36) fullerene with D(6h) symmetry has been performed using the MP2 theory. Their equilibrium structures, reaction energies, strain energies, lowest unoccupied molecular orbital-highest occupied molecular orbital (LUMO-HOMO) gap energies, and aromaticities have been studied. The calculation results showed that those addition reaction were highly exothermic and C(36)X(n) were more stable than C(36). Moreover, from the view of thermodynamics it should be possible to detect C(36)X(6). The LUMO-HOMO gap energies of C(36)X(n) were higher than D(6h)C(36) and the redox characteristics of C(36)X(n) were weaker comparing to D(6h)C(36). The analyses of pi-orbital axis vector indicated that the chemical reactivity of C(36) was the result of the high strain, and the nucleus independent chemical shifts research showed that the stabilities of the C(36)X(6) were correlative with the conjugation effect.  相似文献   

15.
Reaction of a stoichiometric equivalent of the zinc-dithiolene complex, (tmeda)ZnS2C2(COOMe)2 (tmeda = tetramethylethylenediamine), with (MeCN)2PdCl2 results in a 1:1 homoleptic dithiolene that forms the hexanuclear cluster [PdS2C2(COOMe)2]6 (1). X-ray structure analysis of 1 indicates a Pd6S12 core comprised of six face-centered palladium atoms and 12 edge-centered sulfur atoms situated on an imaginary approximate cube. Complex 1 undergoes four distinct and reversible one-electron redox steps in dichloromethane at -186, -484, -1174, and -1524 mV versus a standard calomel electrode (ferrocenium+/ferrocene redox couple 409 mV). The two-electron reduction product of 1, [Bu4N]2[(PdS2C2(COOMe)2)6] (2), has been chemically isolated and characterized.  相似文献   

16.
A series of redox isomers of [CrIII(X4SQ)(X4Cat)2]2-, [CrIII(X4SQ)2(X4Cat)]-, and [CrIII(X4SQ)3]0 (X = Cl and Br, SQ = semiquinonate, and Cat = catecholate) have been synthesized and characterized as charge-transfer (CT) compounds with metallocenium cations: (CoIIICp2)2[CrIII(Cl4SQ)(Cl4Cat)2] (1), (CoIIICp2)2[CrIII(Br4SQ)(Br4Cat)2] (2), (FeIIICp2)[CrIII(Cl4SQ)2(Cl4Cat)].C6H6 (4), (FeIIICp2)[CrIII(Br4SQ)2(Br4Cat)].CS2 (5), and (FeIIICp2)[CrIII(Cl4SQ)2(Cl4Cat)][CrIII(Cl4SQ)3] (6). First, the oxidation states of the chromium complexes are strongly dependent on the redox potentials of the metallocenes used. The CoIICp2, exhibiting stronger reduction power than FeIICp2, is useful for two-electron reduction of the [CrIII(X4SQ)3]0, affording [CrIII(X4SQ)(X4Cat)2]2- (1 and 2), which are first isolated and crystallographically characterized in the solid state. In contrast the reaction with FeIICp2 affords only [CrIII(X4SQ)2(X4Cat)]- (4 and 5). Second, solvents influence crystal structures of these compounds. The solvent set of C6H6/CS2 gives 1:1:C6H6 compound 4 with unique charged anions, [CrIII(Cl4SQ)2(Cl4Cat)]-, while the other set, n-C6H12/CS2, affords 1:2 compound 6 including the two redox isomers, [CrIII(Cl4SQ)2(Cl4Cat)]- and [CrIII(Cl4SQ)3]0. The [CrIII(X4SQ)(X4Cat)2]2- anions in 1 and 2 show no significant interconnection between them (discrete type), while the [CrIII(X4SQ)2(X4Cat)]- anions in 4-6 show one-dimensional column-type structures with the aid of intermolecular stacking interactions of the ligand moieties. The anions in 4 show additional stacking interaction with the [FeIIICp2]+ to form one-dimensional ...[D][A][S][D][A]... (D = [FeIIICp2]+, A = [CrIII(Cl4SQ)2(Cl4Cat)]-, and S = C6H6) type mixed-stack arrangements similar to that of previously reported (CoIIICp2)[CrIII(Cl4SQ)2(Cl4Cat)].C6H6 (3). Compound 6 forms a two-dimensional sheet structure where the two redox isomers, [CrIII(Cl4SQ)2(Cl4Cat)]- and [CrIII(Cl4SQ)3]0, are included. The sheet is regarded as a mixed-valence molecular assembly. Two types of the anions, [CrIII(X4SQ)(X4Cat)2]2- (1 and 2) and [CrIII(X4SQ)2(X4Cat)]- (4-6), exhibiting an intramolecular mixed-valence state, show intramolecular intervalence CT transition (IVCT) from the Cat to the SQ at near 5800 and 4300 cm-1, respectively, both in the solution and in the solid states. The intermolecular mixed-valence state of 6 was characterized by absorption spectroscopy, electric conductivity, and SQUID magnetometry. Interestingly, this mixed-valence state of the chromium module is dependent on the redox active nature of the coordinated ligands.  相似文献   

17.
Molecules of Li(n)X (n = 2, 3; X = Cl, Br, I) were examined with a magnetic sector mass spectrometer by surface ionization using a triple rhenium filament impregnated with fullerene (C60). The ionization energies obtained for Li(2)Cl, Li(2)Br and Li(2)I molecules are 3.8 +/- 0.1, 3.9 +/- 0.1 and 4.0 +/- 0.1 eV, respectively. The first ionization energy of Li(2)Cl is documented, while there are no literature data for the ionization energies of Li(2)Br and Li(2)I. The molecules of Li(3)Cl, Li(3)Br and Li(3)I were detected experimentally for the first time with ionization energies of 4.0 +/- 0.1, 4.1 +/- 0.1 and 4.1 +/- 0.1 eV, respectively. The ionization energies of Li(n)X (n = 2, 3; X = Cl, Br, I) are in correlation with the theoretical prediction of their hyperlithiated configurations.  相似文献   

18.
Li Z  Loh ZH  Mok KF  Hor TS 《Inorganic chemistry》2000,39(23):5299-5305
Three heterometallic Au-Pt complexes [Pt2(PPh3)4(mu-S)(mu 3-S)Au(PPh3)][PF6] (2), [Pt2(PPh3)4(mu 3-S)2Au2(mu-dppm)]-[PF6]2 (3), and [Pt2(PPh3)4(mu 3-S)2Au2(mu-dppf)][PF6]2 (4) have been synthesized from Pt2(PPh3)4(mu-S)2 (1) [dppm = Ph2PCH2PPh2; dppf = (C5H4PPh2)2Fe] and characterized by single-crystal X-ray crystallography. In 2, the Au(I) atom is anchored on only one of the sulfur centers. In 3 and 4, both sulfur atoms are aurated, showing the ability of 1 to support an overhead bridge structure, viz. [Au2(P-P)], with or without the presence of Au-Au bond. The change of dppf to dppm facilitates such active interactions. Two stereoisomers of complex 3 (3a,b) have been obtained and characterized by single-crystal X-ray crystallography. NLDFT calculations on 2 show that the linear coordination mode is stabilized with respect to the trigonal planar mode by 14.0 kJ/mol. All complexes (2-4) are fluxional in solution with different mechanisms. In 2, the [Au(PPh3)] fragment switches rapidly between the two sulfur sites. Our hybrid MM-NLDFT calculations found a transition state in which the Au(I) bears an irregular trigonal planar geometry (delta G++ = 19.9 kJ/mol), as well as an intermediate in which Au(I) adopts a regular trigonal planar geometry. Complexes 3a,b are roughly diastereoisomeric and related by sigma (mirror plane) conversion. This symmetry operation can be broken down to two mutually dependent fluxional processes: (i) rapid flipping of the dppm methylene group across the molecular plane defined by the overhead bridge; (ii) rocking motion of the two Au atoms across the S...S axis of the (Pt2S2) core. Modeling of the former by molecular mechanics yields a steric barrier of 29.0 kJ/mol, close to that obtained from variable-temperature 31P(1Hz) NMR study (33.7 kJ/mol). In 4, the twisting of the ferrocenyl moiety across the S...S axis is in concert with a rocking motion of the two gold atoms. The movement of dppf is sterically most demanding, and hence, 4 is the only complex that shows a static structure at lower temperatures. Pertinent crystallographic data: (2) space group P1, a = 15.0340(5) A, b = 15.5009(5) A, c = 21.9604(7) A, alpha = 74.805(1) degrees, beta = 85.733(1) degrees, gamma = 78.553(1) degrees, R = 0.0500; (3a) space group Pna2(1), a = 32.0538(4) A, b = 16.0822(3) A, c = 18.9388(3) A, R = 0.0347; (3b) space group Pna2(1), a = 31.950(2) A, b = 16.0157(8) A, c = 18.8460(9) A, R = 0.0478; (4) space group P2(1)/c, a = 13.8668(2) A, b = 51.7754(4) A, c = 15.9660(2) A, beta = 113.786(1) degrees, R = 0.0649.  相似文献   

19.
Transition metal-boron complexes BnM have been predicted at density functional theory level to be molecular bowls (n = 8-14) hosting a transition metal atom (M) inside or molecular tires (n = 14) centered with a transition metal atom. Small Bn clusters prove to be effective inorganic ligands to all the VB-VIIIB transition metal elements in the periodic table. Density functional evidences obtained in this work strongly suggest that bowl-shaped fullerene analogues of Bn units exist in small BnM complexes and the bowl-to-tire structural transition occur to the first-row transition metal complexes BnM (M = Mn, Fe, Co) at n = 14, a size obviously smaller than n = 20 where the 2D-3D structural transition occurs to bare Bn. The half-sandwich-type B12Cr (C3v), full sandwich-type (B12)2Cr (D3d), bowl-shaped B14Fe (C2), and tire-shaped B14Fe (D7d) and B14Fe- (C7v) are the most interesting prototypes to be targeted in future experiments. These BnM complexes may serve as building blocks to form extended boron-rich BnMm tubes or cages (m > or = 2) or as structural units to be placed inside carbon nanotubes with suitable diameters.  相似文献   

20.
Reaction of (C6H3-2-AsPh2-n-Me)Li (n = 5 or 6) with [AuBr(AsPh3)] at -78 degrees C gives the corresponding cyclometallated gold(I) complexes [Au2[(mu-C6H3-n-Me)AsPh2]2] [n = 5, (1); n = 6, (9)]. 1 undergoes oxidative addition with halogens and with dibenzoyl peroxide to give digold(II) complexes [Au2X2[(mu-C6H3-5-Me)AsPh2]2] [X = Cl (2a), Br (2b), I (2c) and O2CPh (3)] containing a metal-metal bond between the 5d9 metal centres. Reaction of 2a with AgO2CMe or of 3 with C6F5Li gives the corresponding digold(II) complexes in which X = O2CMe (4) and C6F5 (6), respectively. The Au-Au distances increase in the order 4 < 2a < 2b < 2c < 6, following the covalent binding tendency of the axial ligand. Like the analogous phosphine complexes, 2a-2c and 6 in solution rearrange to form C-C coupled digold(I) complexes [Au2X2[mu-2,2-Ph2As(5,5-Me2C6H3C6H3)AsPh2]] [X = Cl (5a), X = Br (5b), X = I (5c) and C6F5 (7)] in which the gold atoms are linearly coordinated by As and X. In contrast, the products of oxidative additions to 9 depend markedly on the halogens. Reaction of 9 with chlorine gives the gold(I)-gold(III) complex, [ClAu[mu-2-Ph2As(C6H3-6-Me)]AuCl[(6-MeC6H3)-2-AsPh2]-kappa2As,C] (10), which contains a four-membered chelate ring, Ph2As(C6H3-6-Me), in the coordination sphere of the gold(III) atom. When 10 is heated, the ring is cleaved, the product being the digold(I) complex [ClAu[mu-2-Ph2As(C6H3-6-Me)]Au[AsPh2(2-Cl-3-Me-C6H3)]] (11). Reaction of 9 with bromine at 50 degrees C gives a monobromo digold(I) complex (12), which is similar to 11 except that the 2-position of the substituted aromatic ring bears hydrogen instead halogen. Reaction of 9 with iodine gives a mixture of a free tertiary arsine, (2-I-3-MeC6H3)AsPh2 (13), a digold diiodo compound (14) analogous to 11, and a gold(I)-gold(III) zwitterionic complex [I2Au(III)[(mu-C6H3-2-AsPh2-6-Me)]2Au(I)] (15) in which the bridging units are arranged head-to-head between the metal atoms. The structures of 2a-2c and 4-15 have been determined by single-crystal X-ray diffraction analysis. The different behaviour of 1 and 9 toward halogens mirrors that of their phosphine analogues; the 6-methyl substituent blocks C-C coupling of the aryl residues in the initially formed oxidative addition product. In the case of 9, the greater lability of the Au-As bond in the initial oxidative addition product may account for the more complex behaviour of this system compared with that of its phosphine analogue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号