首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-dimensional microclusters made up of particles repelled by the dipole law and confined by an external quadratic potential are considered. The model describes a number of physical systems, in particular, electrons in semiconductor structures near a metallic electrode, indirect excitons in coupled semiconductor dots etc. Two competing types of particle ordering in clusters have been revealed: formation of a triangular lattice and of a shell structure. Equilibrium configurations of clusters with N=1–40 particles are calculated. Temperature dependences of the structure, potential energy, and mean-square radial and angular displacements are studied. These characteristics are used to investigate cluster melting. Melting occurs in one or two stages, depending on N. Melting of a two-shell microcluster takes place in two stages: at low temperatures—from the frozen phase to a state with rotationally reoriented “crystalline” shells with respect to one another, followed by a transition involving breakdown of radial order. Melting in a cluster made up of a larger number of shells occurs in one stage. This is due to the fact that the potential barrier to intershell rotation is substantially lower than that to particle jumping from one shell to another for small N, and of the same order of magnitude for large N. A method is proposed for predicting the character of melting in shell clusters by comparing the potential barriers for shell rotation and intershell particle jumping. Fiz. Tverd. Tela (St. Petersburg) 40, 1379–1386 (July 1998)  相似文献   

2.
The melting of two-dimensional and three-dimensional Coulomb micro- and macroclusters is studied. Temperature dependences of radial and angular square deviations of particles are investigated. The melting of microclusters has two stages: at lower temperature there is a transition from a frozen phase to a state with a rotatory reorientation of “crystalline” shells relative to each other, different pairs of shells melting at different temperatures. In the case of large N and high triangular symmetry inside the cluster, orientational melting takes place only for external pairs of shells. In this case external shells lose their order. At higher temperature a transition with a loss of radial shell order occurs. The origin of two-stage melting is in the smallness of the barrier energy relative to the rotation of shells in comparison with the barrier corresponding to the radial disordering of shells. It is shown also that the temperatures of orientational and total melting are at 5–15 times lower than the temperatures of disappearance of corresponding potential barriers. The influence of confinement anisotropy on the character of cluster melting is considered. It is found that at some degree of anisotropy the melting becomes one stage. The last is connected with an increase of the ratios of barriers of intershell rotation to barriers of jumps of a particle between the shells.  相似文献   

3.
《Physics letters. A》1997,235(1):55-64
Two-dimensional clusters of particles, repelling due to dipole-dipole interactions and confined by an external parabolic potential, are considered. The model describes different physical systems, particularly electrons in semiconductor structures, or electrons above a drop of He near a metal electrode, a drop of colloid liquid etc. Two kinds of ordering are in competition in the clusters: a triangular lattice and a shell structure. The ground-state configurations corresponding to the local and global minima of the potential energy for clusters with N = 1 – 40 “particles” are calculated. The structure, the potential energy and the radial and angular r.m.s. displacements as functions of temperature are also calculated. Analysing these quantities the melting of clusters is studied. One- or two-stage melting occurs depending on the number of particles in the cluster. In the case of clusters consisting of two shells melting has two stages: at lower temperature reorientation of neighbouring shells (“orientational melting”) arises; at much higher temperatures the radial shell order disappears. In clusters consisting of more than two shells total melting occurs as a first-order one-stage transition (analogously to a dipole crystal). This is connected with the barrier of rotation being less than the barrier of interchange of particles between shells for small microclusters while the barriers are of equal order for clusters with a greater number of particles.  相似文献   

4.
A two dimensional (2D) classical system of dipole particles confined by a quadratic potential is studied. This system can be used as a model for rare electrons in semiconductor structures near a metal electrode, indirect excitons in coupled quantum dots etc. For clusters of N ≤ 80 particles ground state configurations and appropriate eigenfrequencies and eigenvectors for the normal modes are found. Monte-Carlo and molecular dynamic methods are used to study the order-disorder transition (the “melting” of clusters). In mesoscopic clusters (N < 37) there is a hierarchy of transitions: at lower temperatures an intershell orientational disordering of pairs of shells takes place; at higher temperatures the intershell diffusion sets in and the shell structure disappears. In “macroscopic” clusters (N > 37) an orientational “melting” of only the outer shell is possible. The most stable clusters (having both maximal lowest nonzero eigenfrequencies and maximal temperatures of total melting) are those of completed crystal shells which are concentric groups of nodes of 2D hexagonal lattice with a number of nodes placed in the center of them. The picture of disordering in clusters is compared with that in an infinite 2D dipole system. The study of the radial diffusion constant, the structure factor, the local minima distribution and other quantities shows that the melting temperature is a nonmonotonic function of the number of particles in the system. The dynamical equilibrium between “solid-like” and “orientationally disordered” forms of clusters is considered.  相似文献   

5.
Melting of two-dimensional Abrikosov-vortex microclusters in a type-II superconductor island with thickness less than the coherence length has been studied. Equilibrium configurations corresponding to local and global minima of potential energy for clusters with N=1–50 particles are calculated. The temperature dependences of the structure and of mean-square radial and angular vortex displacements are investigated. It is shown that vortex microclusters melt in two stages: first the frozen-out phase transfers to a state corresponding to rotational reorientation of crystalline shells with respect to one another, followed by a transition to a state with no radial order at a substantially higher temperature. The reason for this is that the barrier to shell rotation is significantly lower than that to radial breakdown of shells. Fiz. Tverd. Tela (St. Petersburg) 39, 1005–1010 (June 1997)  相似文献   

6.
Two-dimensional Wigner microclusters in a semiconductor dot are studied. Their melting is investigated in detail and it is shown that, for typical mesoscopic clusters possessing a shell structure, melting occurs in two stages: orientational melting (rotation of the shells relative to one another) and total melting, where the shells start to overlap with one another and exchange particles. An example of a “magic” microstructure which has a triangular structure and melts in a single stage is presented. For this, the temperature dependences of various quantities characterizing cluster structure are investigated. The change in the distribution of cluster configurations over local minima of the potential energy with increasing temperature is investigated. At temperatures below the temperature of total melting, a cluster is always located near the configuration of a global minimum and, at temperatures above the temperature of complete melting, a cluster can be located with finite probability near configurations corresponding to various local minima of the potential energy. Fiz. Tverd. Tela (St. Petersburg) 41, 1499–1504 (August 1999)  相似文献   

7.
The melting of two-dimensional microclusters of “particles” which repel one another according to a logarithmic law and are confined by an external quadratic potential is investigated. The model describes Abrikosov vortices in a superconducting island of vortices in a rotating superfluid liquid and electrons in a semiconductor nanostructure surrounded by a low-permittivity medium. The structure of clusters and its dependence on temperature and melting are investigated. The melting of microclusters of vortices proceeds in two stages: 1. A transition from a frozen phase into a state corresponding to rotational reorientation of crystal shells relative to one another. 2. At a higher temperature, the radial order vanishes. This is connected with the fact that the barrier for rotation of the shells is much lower than the barrier for radial breakup of the shells. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 3, 268–273 (10 February 1997)  相似文献   

8.
The structure and phase transitions in the mesoscopic system of vortices in a quasi-two-dimensional superconducting ring are investigated. The shell structure of the mesoscopic system of vortices is studied, and its variation with the number of vortices and the parameters of the superconducting ring is analyzed. Two mechanisms of formation of new shells in vortex clusters with an increasing number of vortices in an increasing magnetic field are discovered: the generation of a new shell in a cluster and the splitting of the internal shell into two shells. The melting of vortex clusters and their thermodynamic parameters are analyzed using the Monte Carlo method. It is found that the melting of shell-type clusters occurs in two stages, orientation melting taking place at the lower temperature (during which nearly crystalline adjacent shells start rotating relative to each other) and blurring of the vortex structure occurring at the higher temperature. The shells obtained by splitting upon an increase in the number of vortices do not participate in orientational melting. The two-stage form of melting is associated with the smaller height of potential barriers being surmounted during the rotation of shells relative to one another as compared to the barrier for vortices jumping from one shell to another.  相似文献   

9.
Melting of two-dimensional (2D) clusters of classical particles is studied using Brownian dynamics and Langevin molecular dynamics simulations. The particles are confined either by a circular hard wall or by a parabolic external potential and interact through a dipole or a screened Coulomb potential. We found that, with decreasing strength of the interparticle interaction, clusters with a short-range interparticle interaction and confined by a hard wall exhibit a reentrant behavior in its orientational order.  相似文献   

10.
The angular and radial melting properties of two-dimensional classical systems consisting of different types of particles confined in a parabolic trap are studied through modified Monte Carlo simulations. A universal behavior of the angular melting process is found, which occurs in multiple steps due to shell depended melting temperatures. The melting sequence of the different shells is determined by two major factors: (1) the confinement strength which each shell is subjected to, and (2) the specific structure of each shell. Further, a continuous radial disordering of the particle types forming a single circular shell is found and analyzed. This phenomenon has never been observed before in two-dimensional mono-dispersive systems. This continuous radial disordering results from the high energy barrier between different particle types in multi-species systems.  相似文献   

11.
The “phase diagram” of a two-dimensional mesoscopic system of bosons is investigated. An example of such a system is a system of indirect magnetoexcitons in semiconductor double quantum dots. Quantum Monte Carlo calculations show the existence of quantum orientational melting. At zero (quite low) temperature, as quantum fluctuations of the particles intensify, two quantum disordering phenomena occur with increasing de Boer parameter q. First, at q≈10−3 the system passes to a radially ordered but orientationally disordered state, where different shells of a cluster rotate relative to one another. Then at q≈0.16 a transition to a superfluid state occurs. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 11, 817–822 (10 December 1998)  相似文献   

12.
We present results of Monte‐Carlo simulations for finite 2D single and bilayer systems. Strong Coulomb correlations lead to arrangement of particles in configurations resembling a crystal lattice. For binary layers there exists a particularly rich variety of lattice symmetries which depend on the interlayer separation d. We demonstrate that in these mesoscopic lattices there exist two fundamental types of ordering: radial and orientational. The dependence of the melting temperature on d is analyzed and a stabilization of the crystal compared to a single layer is found.  相似文献   

13.
The melting-like transition in disordered sodium clusters Na92 and Na142 is studied by performing density functional constant-energy molecular dynamics simulations. The orbital-free version of the density functional formalism is used. In Na142 the atoms are distributed in two distinct shells (surface and inner shells) and this cluster melts in two steps: the first one, at ≈130 K, is characterized by the development of a high intrashell atomic mobility, and the second, homogeneous melting at ≈270 K, involves diffusive motion of all the atoms across the whole cluster volume. On the contrary, the melting of Na92 proceeds smoothly over a very broad temperature interval, without any abrupt change in the thermal or structural indicators. The occurrence of two steps in the melting transition is suggested to be related to the existence of a grouping of the atoms in radial shells, even if those shells present a large degree of internal disorder. It then appears that a cluster can be considered fully amorphous (totally disordered) only when there are no radial regions of low atomic density separating shells. The isomer of Na92 studied here fulfills this criterion and its thermal behavior can be considered as representative of that expected for fully amorphous clusters. Disordered Na142, on the other hand, that has a discernible structure of an inner and a surface shell, should be considered as not fully disordered. The thermal behavior of these two clusters is also compared to that of icosahedral (totally ordered) sodium clusters of the same sizes. Received 5 February 2001 and Received in final form 21 May 2001  相似文献   

14.
The dynamics of vortex matter in mesoscopic superconducting Corbino disk is strongly influenced by the discrete vortex structure arranged in shells. While in previous works the vortex dynamics has been studied in large (macroscopic) and in very small mesoscopic disks (containing only few shells), in the intermediate-size regime it is much more complex and unusual, due to: (i) the competition between the vortex–vortex interaction and confinement and (ii) (in)commensurability among the vortex shells. We found that the interplay between these effects can result in a very unusual vortex dynamical behavior: (i) unconventional angular melting (i.e., propagating from the boundary, where the shear stress is minimum, towards the center) and (ii) unconventional dynamics of shells (i.e., the inversion of shell velocities with respect to the gradient driving force). This unusual behavior is found for different number of shells.  相似文献   

15.
The dipole blockade effect at laser excitation of mesoscopic ensembles of Rydberg atoms lies in the fact that the excitation of one atom to a Rydberg state blocks the excitation of other atoms due to the shift in the collective energy levels of interacting Rydberg atoms. It is used to obtain the entangled qubit states based on single neutral atoms in optical traps. In this paper, we present our experimental results on the observation of the dipole blockade for mesoscopic ensembles of 1–5 atoms when they are detected by the selective field ionization method. We have investigated the spectra of the three-photon laser excitation 5S1/2 → 5P3/2 → 6S1/2 → nP3/2 of cold Rydberg Rb atoms in a magneto-optical trap. We have found that for mesoscopic ensembles this method allows only a partial dipole blockage to be observed. This is most likely related to the presence of parasitic electric fields reducing the interaction energy of Rydberg atoms, the decrease in the probability of detecting high states, and the strong angular dependence of the interaction energy of Rydberg atoms in a single interaction volume.  相似文献   

16.
The thermodynamic properties of a cluster of point Coulomb charges on a sphere have been analyzed using the Monte Carlo method for the number of charges 20 ≤ N ≤ 90. The ground state of the system of charges is described in the model of a closed quasi-two-dimensional triangular lattice with topological defects. We have determined the dependence of the Lindeman parameter δL of this system on N and on the dimensionless parameter $ \tilde T $ \tilde T , which is proportional to the temperature T and to the radius R of the cluster: $ \tilde T = {{k_B T\varepsilon R} \mathord{\left/ {\vphantom {{k_B T\varepsilon R} {e^2 }}} \right. \kern-\nulldelimiterspace} {e^2 }} $ \tilde T = {{k_B T\varepsilon R} \mathord{\left/ {\vphantom {{k_B T\varepsilon R} {e^2 }}} \right. \kern-\nulldelimiterspace} {e^2 }} , where ∈ is the dielectric constant of the medium and e is the charge of a particle. The “magic numbers,” i.e., the N values, for which the melting point of the closed triangular lattice of charges is much higher than those for neighboring N values, have been found. The evolution of the lattice-melting mechanisms with an increase in the number of charges N in a mesoscopic cluster has been analyzed. For N ≤ 32, the melting of the lattice does not involve dislocations (nontopological melting); this behavior of the mesoscopic system of charges on the sphere differs from the behavior of the extended planar two-dimensional system. At N ≳ 50, melting is accompanied by the formation of dislocations. The mechanism of dislocation-free non-topological melting of a closed lattice, which occurs at small N values and is associated with the cooperative rotational motion of “rings” of particles, has been analyzed. The model has various implementations in the mesoscopic region; in particular, it describes the system of electrons over the liquid-helium cluster, the liquid-helium cluster with incorporated charged particles, a multielectron bubble in liquid helium, a charged quantum dot, etc.  相似文献   

17.
The phase diagram of a two-dimensional mesoscopic system of charges or dipoles, whose realizations could be electrons in a semiconductor quantum dot or indirect excitons in a system of two vertically coupled quantum dots, is investigated. Quantum calculations using ab initio Monte Carlo integration along trajectories determine the properties of such objects in the temperature-quantum de-Boer-parameter plane. At zero (sufficiently low) temperature, as the quantum fluctuations of the particles increase, two types of quantum disordering phenomena occur with increasing quantum de Boer parameter q: first, for q∼10−5 the systems transform into a radially ordered but orientationally disordered state wherein various shells of the “atom” rotate relative to one another. For much larger q∼0.1, a transition occurs to a disordered state (a superfluid in the case of a system of bosons). Fiz. Tverd. Tela (St. Petersburg) 41, 1856–1862 (October 1999)  相似文献   

18.
The properties of a system of charged particles on a 2D lattice, subject to an anisotropic Jahn-Teller-type interaction and 3D Coulomb repulsion, are investigated. In the mean-field approximation without Coulomb interaction, the system displays a phase transition of first order. When the long-range Coulomb interaction is included, Monte Carlo simulations show that the system displays very diverse mesoscopic textures, ranging from spatially disordered pairs to ordered arrays of stripes, or charged clusters, depending only on the ratio of the two interactions (and the particle density). Remarkably, charged objects with an even number of particles are more stable than with an odd number of particles. We suggest that the diverse functional behavior-including superconductivity-observed in oxides can be thought to arise from the self-organization of this type.  相似文献   

19.
ABSTRACT

The microstructure transformations in copper subjected to high-rate deformation via dynamic channel angular pressing (DCAP) have been examined after one and four DCAP passes using electron backscattering diffraction. The focus was on the interrelation between microstructure and texture evolution and on the role of deformation twinning in these processes. During the first pass, a mesoscopic banding is shown to be the main mechanism of grain fragmentation, while the texture is qualitatively similar to that of face-centered cubic metals subjected to equal channel angular pressing, including the presence of characteristic texture components C, A1 and A2. A correspondence between structural elements and texture components occurs. Specifically, the mesobands have orientations near either an A1 or A2 ideal orientation, whereas the matrix has an orientation near C. Inside the A1-bands, microtwins with orientations near A2 are observed. Detailed analysis of the A2-bands suggests that they may be of twinning origin. Similar orientation dependence of microstructure, though on a much finer scale, is observed after four DCAP passes. Based on the microstructure examination, it was suggested that mesoscopic banding together with deformation twinning continue to be principal mechanisms of grain refinement until the fourth pass, resulting in the formation of ultrafine-grained structure.  相似文献   

20.
Calculations of the quantum structures describing the initial solvation shells of bosonic helium atoms around a polar, ionic system like LiH+ are reported, together with the corresponding quantum energies. The calculations were carried out using the Diffusion Monte Carlo (DMC) approach and parametric trial functions. Its final radial and angular distributions for clusters of varying size are analysed and discussed. The solvation of this ionic dopant is shown to occur in a way which is strongly affected by the orientational induction forces between the latter molecule and the solvent atoms, indicating the onset of “snowball" structures at the location of the dopant and the clear distinction between “heliophilic" and “heliophobic" regions of microsolvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号