首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The mixed ligand complexes PtX2(ER3)L and PtXY(ER3)L (where ER3 = PR3 or AsMe3; L = phosphine, arsine; X = Cl; Y = Cl, H or Me) have been prepared and characterized. Reaction of PtMe2(ER3)L with HCl yields PtMeCl(ER3)L, in exclusively one of three possible isomeric forms. Excess tetramethyltin reacts with Pt2Cl2(μ-Cl)2(PMe2Ph)2 giving both cis and trans Pt2(μ-Cl)2(PMe2Ph)2, as identified from the NMR spectra. Cleavage of Pt2(μ-Cl)2Me2(PMe2Ph)2 with donor ligands such as AsPh3, PMe2 or pyridine, was useful as a synthetic route to the unsymmetrical methylchloro PtII derivatives. The reaction of cis-[PtMe2(PPh3)(AsPh3)] with excess dimethylacetylenedicarboxylate (DMA) yielded only one product, which was of the formula trans-[Pt{C(COOCH3)C(COOCH3)CH3}2(PPh3)(AsPh3)], with the alkenyl groups having the same geometry about the CC bond. The use of diethylacetylene-dicarboxylate (DEA) rather than DMA gave a similar product. However, when cis-[PtMe2(PEt3)(AsPh3)] was allowed to react with DMA, two products of the formula trans-[Pt{C(COOCH3)C(COOCH3)CH3}2(PEt3)(AsPh3)] were obtained, with the stereochemistry of both alkenyl groups being either cis or trans.  相似文献   

2.
Abstract

The 1H nmr spectra of freshly prepared CDCl3 solutions of the complexes trans-[PtCl2(olefin)(L)], where L is pyridine or a substituted pyridine, show no coupling between 1 9 5Pt and the α protons of pyridine (3Jpt–NCH) owing to rapid exchange of complexed L with free L. On standing, the adventitious free L is gradually consumed by formation of trans-[PtCl2(L)2] and the spectra of the aged solutions show the coupling. When CDCl, solutions of [PtBr2(Olb)(Lb)] and [PtCl2(Ola)(La)], where Ola =C2H4, are mixed, a total of 6 ethylene complexes can be identified in solution. Accordingly halogen trading, Ol trading or/and L trading occurs and the solution probably contains a total of 12 complexes.  相似文献   

3.
Preparation and properties of the diamagnetic planar complexes trans-[p-C6H4(CCPd(X)(PEt3)2)2] (X = Cl, Br, I, NCS) and trans-[p-C6H4(CCPd(X)(PEt3)2)2](ClO4)2 (X = PEt3, pyridine) are described. The structures of the compounds have been determined by 31P and 1H NMR spectroscopy. The IR spectra are discussed.  相似文献   

4.
Trans-[RuCl2(CO)2(PEt3)2] reacts with two equivalents of a series of 1,1-dithiolate ligands to form the bis(dithiolate) complexes, cis-[Ru(CO)(PEt3)(S2X)2] (X = CNMe2, CNEt2, COEt, P(OEt)2, PPh2). Two intermediates have been isolated; trans-[Ru(PEt3)2Cl(CO){S2P(OEt)2}] and trans-[Ru(PEt3)2(CO)(η1-S2COEt)(η2-S2COEt)], allowing a simple reaction scheme to be postulated involving three steps; (i) initial replacement of cis carbonyl and chloride ligands, (ii) substitution of the second chloride, (iii) loss of a phosphine. Thermolysis of cis-[Ru(CO)(PEt3)(S2CNMe2)2] with Ru3(CO)12 in xylene affords trinuclear [Ru33-S)2(PEt3)(CO)8] as a result of dithiocarbamate degradation. Crystal structures of cis-[Ru(CO)(PEt3)(S2X)2] (X = NMe2, COEt), trans-[Ru(PEt3)2Cl(CO){S2P(OEt)2}], trans-[Ru(PEt3)2(CO)(η1-S2COEt)(η2-S2COEt)] and [Ru33-S)2(PEt3)(CO)8] are reported.  相似文献   

5.
The reactions of [M2Cl2(μ-Cl)2(PMe2Ph)2] with mercapto-o-carboranes in the presence of pyridine afforded mono-nuclear complexes of composition, [MCl(SCb°R)(py)(PMe2Ph)] (M = Pd or Pt; Cb° = o-C2B10H10; R = H or Ph). The treatment of [PdCl2(PEt3)2] with PhCb°SH yielded trans-[Pd(SCb°Ph)2(PEt3)2] (4) which when left in solution in the presence of pyridine gave another substitution product, [Pd(SCb°Ph)2(py)(PEt3)] (5). The structures of [PdCl(SCb°Ph)(py)(PMe2Ph)] (1), [Pd(SCb°Ph)2(PEt3)2] (4) and [Pd(SCboPh)2(py)(PEt3)] (5) were established unambiguously by X-ray crystallography. The palladium atom in these complexes adopts a distorted square-planar configuration with neutral donor atoms occupying the trans positions. Thermolysis of [PdCl(SCb°)(py)(PMe2Ph)] (2) in TOPO (trioctylphosphine oxide) at 200 °C gave nanocrystals of TOPO capped Pd4S which were characterized by XRD pattern and SEM.  相似文献   

6.
The complex [Pt(C2H4)(PPh3)2] reacts with Pb2Ph6 to give cis-[PtPh(Pb2Ph5)(PPh3)2]; this decomposes in solution to cis-[PtPh(PbPh3)(PPh3)2], which may also be obtained from the ethylene complex and PbPh4. Lead compounds PbPhMe3 and PbPh3Br also give products of insertion into PbPh bonds, but PbMe3Cl gives cis- and trans-[PtCl(PbMe3)(PPh3)2]. The complex trans-[Pt(PbPh3)2(PEt3)2] reacts with 1,2-bis(diphenylphosphino)ethane (DPPE) to give [Pt(PbPh3)2(DPPE)] which readily decomposes in dichloromethane in presence of PEt3 to give [Pt(PbPh3)(PEt3)(DPPE)]Cl and [PtPh(PEt3)(DPPE)]Cl. The complex trans-[PtCl(PbPh3)(PEt3)2] was detected in the products of reactions between trans-[PtCl2(PEt3)2] and trans-[Pt(PbPh3)2(PEt3)2] or less than 2 moles of LiPbPh3; it was not detected in the mixture after treatment of trans -[Pt(PbPh3)2(PEt3)2] with HCl. In contrast to an earlier report, we were unable to detect lead-containing complexes in the products of the reaction between trans-[PtHCl(PPh3)2] and Ph3PbNO3. The complexes and their decomposition products were identified by pre31P-{1H} NMR spectroscopy.  相似文献   

7.
The reaction of a dichloromethane solution of a mixture of cis,trans-[PtCl2(SMe2)2] with a tetrahydrofuran solution of SnBr2 resulted in oxidation of platinum(II) with halogen exchange producing cis,trans-[PtBr4(SMe2)2]. Reaction of a mixture of cis,trans-[PtCl2(SEt2)2], potassium tetrachloroplatinate(II) or potassium hexachloroplatinate(IV) with SnBr2 in hydrochloric acid solution resulted in formation of predominantly anionic five-coordinate trichlorostannyl platinum(II) complexes. Reaction of potassium tetrabromoplatinate(II) with SnCl2 in hydrobromic acid in the presence of tetraphenylphosphonium bromide affords cis-[PPh4]2[PtBr2(SnBr3)2]. The insertion of SnCl2 into Pt–Cl bond of platinum(II) complexes cis-[PtCl2(L2)] {L2 = (PPh3)2; (PMe3)2; {P(OMe)3}2; dppm (bis(diphenylphosphino)methane); dppa (bis(diphenylphosphino)amine); and dppe (1,2-bis(diphenylphosphino)ethane)} is described.  相似文献   

8.
The reaction of a mixture of cis and trans-[PtCl2(SMe2)2] with 4,7-phen (4,7-phen = 4,7-phenanthroline) in a molar ratio of 1 : 1 or 2 : 1 resulted in the formation of mono and binuclear complexes trans-[PtCl2(SMe2)(4,7-phen)] (1) and trans-[Pt2Cl4(SMe2)2(μ-4,7-phen)] (2), respectively. The products have been fully characterized by elemental analysis, 1H, 13C{1H}, HHCOSY, HSQC, HMBC, and DEPT-135 NMR spectroscopy. The crystal structure of 1 reveals that platinum has a slightly distorted square planar geometry. Both chlorides are trans with a deviation from linearity 177.66(3)°, while the N–Pt–S angle is 175.53(6)°. Similarly, the reaction of a mixture of cis and trans-[PtBr2(SMe2)2] with 4,7-phen in a 1 : 1 or 2 : 1 mole ratio afforded the mono or binuclear complexes trans-[PtBr2(SMe2)(4,7-phen)] (3) and trans-[Pt2Br4(SMe2)2(μ-4,7-phen)] (4), respectively. The crystal structure of trans-[Pt2Br4(SMe2)2(μ-4,7-phen)].C6H6 reveals that 4,7-phen bridges between two platinum centers in a slightly distorted square planar arrangement of the platinum. In this structure, both bromides are trans, while the PtBr2(SMe2) moieties are syn to each other. NMR data of mono and binuclear complexes of platinum 14 show that the binuclear complexes exist in solution as a minor product, while the mononuclear complexes are major products.  相似文献   

9.
The work reports the unexpected reaction of diphenyldibromo antimonates (III) with PtCl2 and cis‐[PtCl2(PPh3)2]. The reaction gives triphenylstibine containing PtII complexes viz. cis‐[PtBr2(SbPh3)2] ( 1 ), trans‐[[PtBr(Ph)(SbPh3)2] ( 2 ), [NMe4][PtBr3(SbPh3)] ( 3 ), and cis‐[PtBr2(PPh3)(SbPh3)] ( 4 ). All the complexes were characterised by elemental analyses, IR, Raman, 195Pt NMR, FAB mass spectroscopy and X‐ray crystallography. A plausible mechanism via the phenyl migration is proposed for the formation of these complexes. The average Pt–Br distance in 1 is 2.456(2) Å, in 2 2.496 Å(trans to Ph) while in 3 it is 2.476 Å (trans to Sb) implying a comparable trans influence of Ph3Sb and Ph3P.  相似文献   

10.
Reactions of the flexible α,ω-bis(pyrazol-1-yl) compounds 1,2-bis(pyrazol-1-yl)ethane (L1), 1,8-bis(pyrazol-1-yl)-n-octane (L2), bis[2-(pyrazol-1-yl)ethyl]ether (L3) and bis[2-(pyrazol-1-yl)ethyl]thioether (L4) with precursor organometallic platinum complexes ([(PtBr2Me2)n], [(PtIMe3)4] and [(PtMe2(cod)]/I2) are described herein. The spectroscopic characterization of the platinum(IV) products of these reactions [PtBr2Me2{pz(CH2)mpz}], m = 2 (1) or 8 (2), [PtI2Me2{pz(CH2)2pz}] (3), [PtMe3(pzCH2CH2OCH2CH2pz)][BF4] (4) and [PtMe3(pzCH2CH2SCH2CH2pz)][CF3SO3] (5), where ‘pz’ is pyrazol-1-yl, is discussed. Furthermore, solid state structures of 1, a complex with a seven-membered chelate ring, and 4, a complex bearing the neutral κ2N,N′,κO ligand bis[2-(pyrazol-1-yl)ethyl]ether (L3) are reported.  相似文献   

11.
The preparations of cis- and trans-[PtH(C6Cl5)(PEt3)2] by thermal decomposition of cis- and trans-[Pt(OCHO)(C6Cl5)(PEt3)2], respectively, are reported. Also described are cis- and trans-[Pt(SnCl3)(C6Cl5)(PEt3)2], obtained by treating SnCl2 with cis- and trans-[PtCl(C6,Cl5)(PEt3)2], respectively. It is shown that while trans- [PtH(C6Cl5)(PEt3)2] does not form hydride-bridged complexes in the presence of trans-(PtH(MeOH)(PEt3)2]+, the corresponding complex trans-[PtH(C6)(PEt3)2] reacts with the same solvento complex, in methanol, giving labile [(PEt3)2HPt(-μH)Pt(C6F5)(PEt3)2]+.  相似文献   

12.
The preparation of some new cationic aryldiazo complexes of platinum of formula trans-[Pt(N2Ar)(PEt3)2L]+, where N2Ar = N2C6H4F-m or -p and L = NH3, Py, Et3P or EtNC, is described. Protonation of these complexes gives the corresponding aryldiimide complexes trans-[Pt(NHNAr)(PEt3)2L]+, and reduction of the protonated complexes with molecular hydrogen in the presence of a catalyst gives the arylhydrazine complexes trans-[Pt(NH2NHAr)(PEt3)2L]+. Some of the spectroscopic properties of these new complexes are reported and discussed.  相似文献   

13.
Dinuclear Palladium(II), Platinum(II), and Iridium(III) Complexes of Bis[imidazol‐4‐yl]alkanes The reaction of bis(1,1′‐triphenylmethyl‐imidazol‐4‐yl) alkanes ((CH2)n bridged imidazoles L(CH2)nL, n = 3–6) with chloro bridged complexes [R3P(Cl)M(μ‐Cl)M(Cl)PR3] (M = Pd, Pt; R = Et, Pr, Bu) affords the dinuclear compounds [Cl2(R3P)M–L(CH2)nL–M(PR3)Cl2] 1 – 17 . The structures of [Cl2(Et3P)Pd–L(CH2)3L–Pd(PEt3)Cl2] ( 1 ), [Cl2(Bu3P)Pd–L(CH2)4L–Pd(PBu3)Cl2] ( 10 ), [Cl2(Et3P)Pd–L(CH2)5L–Pd(PEt3)Cl2] ( 3 ), [Cl2(Et3P)Pt–L(CH2)3L–Pt(PEt3)Cl2] ( 13 ) with trans Cl–M–Cl groups were determined by X‐ray diffraction. Similarly the complexes [Cl2(Cp*)Ir–L(CH2)nL–Ir(Cp*)Cl2] (n = 4–6) are obtained from [Cp*(Cl)Ir(μ‐Cl)2Ir(Cl)Cp*] and the methylene bridged bis(imidazoles).  相似文献   

14.
The facile access to the Vaska type fluorido complexes trans-[Ir(F)(CO)(PR3)2] [ 6 : R = Et, 7 : R = Ph, 8 : R = iPr, 9 : R = Cy, 10 : R = tBu] was achieved by halide exchange at trans-[Ir(Cl)(CO)(PR3)2] ( 1 – 5 ) with Me4NF. Furthermore, the reaction of complex 6 with SF4 gave cis,trans-[Ir(F)2(SF3)(CO)(PEt3)2] ( 11 ), whereas 8 – 10 did not react. Reactivity studies revealed that 11 can selectively be manipulated at the sulfur atom by hydrolysis or fluoride abstraction to give cis,trans-[Ir(F)2(SOF)(CO)(PEt3)2] ( 12 ) and cis,trans-[Ir(F)2(SF2)(CO)(PEt3)2][AsF6] ( 13 ), respectively.  相似文献   

15.
The neutral distorted octahedral complexes [ReOCl(L)] {H2L = N,N-bis(2-hydroxybenzyl)-2-(2-aminoethyl)dimethylamine (H2had); N,N-bis(2-hydroxybenzyl)-aminomethylpyridine (H2hap); N,N-bis(2-hydroxybenzyl)-2-(2-aminoethyl)pyridine (H2hae)} were prepared by the reaction of trans-[ReOCl3(PPh3)2] with a twofold molar excess of H2L in ethanol. X-ray structure determinations of [ReOCl(had)] (1) and [ReOCl(hap)] (2) were performed, and the structures compared. In both complexes the choride is coordinated trans to the tripodal tertiary amino nitrogen, with a phenolate oxygen trans to the oxo oxygen.  相似文献   

16.
The reaction of the rhodium(I) complexes [Rh(E)(PEt3)3] (E=GePh3 ( 1 ), H ( 6 ), F ( 7 )) with 1,1,3,3,3-pentafluoropropene afforded the defluorinative germylation products Z/E-2-(triphenylgermyl)-1,3,3,3-tetrafluoropropene and the fluorido complex [Rh(F)(CF3CHCF2)(PEt3)2] ( 2 ) together with the fluorophosphorane E-(CF3)CH=CF(PFEt3). For [Rh(Si(OEt)3)(PEt3)3] ( 4 ) the coordination of the fluoroolefin was found to give [Rh{Si(OEt)3}(CF3CHCF2)(PEt3)2] ( 5 ). Two equivalents of complex 2 reacted further by C−F bond oxidative addition to yield [Rh(CF=CHCF3)(PEt3)2(μ-F)3Rh(CF3CHCF2)(PEt3)] ( 9 ). The role of the fluorido ligand on the reactivity of complex 2 was assessed by comparison with the analogous chlorido complex. The use of complexes 1 , 4 and 6 as catalysts for the derivatization of 1,1,3,3,3-pentafluoropropene provided products, which were generated by hydrodefluorination, hydrometallation and germylation reactions.  相似文献   

17.
Alkylsulphinylpyridine ligands containing three potential donor centres: N, S and O atoms and two complexes of general formula trans-[PtCl2(PEt3)PySOR)] (R = Me and n Pr) were prepared and characterized by elemental analysis, i.r. spectroscopy, 1H- and 31P-n.m.r. and X-ray crystallography. The ambidentate ligands act in both situations as monodentate ligands, bonded to the metal exclusively through the nitrogen atom. The crystal structures revealed the occurrence of discrete molecules and, in both complexes, the Pt atoms are coordinated in square planar arrangements by two chloride ions, in a trans configuration, by the pyridine nitrogen atom, and by the phosphine P atom. The oxygen atoms do not take part in the complexation scheme.  相似文献   

18.
Cationic distorted octahedral complexes [ReOCl(OEt)(L)(PPh3)]X {L = 2-(1-ethylaminomethyl)-1-methylimidazole (eami), 2-(1-methylaminomethyl)-1-methylimidazole (mami), 2-(1-ethylthiomethyl)-1-methylimidazole (etmi); X=ReO4, PF6} were prepared by reaction of trans-[ReOCl3(PPh3)2] with a twofold molar excess of L in ethanol under anaerobic conditions. X-ray structure determinations of [ReOCl(OEt)(eami)(PPh3)](ReO4) (1a) and its etmi equivalent (3a) were performed. In 1a coordination of the chloride occurs trans to the imidazole nitrogen. However, in 3a the chloride is coordinated trans to the ethereal sulfur donor of etmi.  相似文献   

19.
《Polyhedron》1999,18(8-9):1207-1210
A series of [OC-6-33][OsCl2(CO)2L2] (L=phosphine) complexes have been prepared by cleavage of [OsCl(μ-Cl)(CO)3]2 with a variety of phosphines for a comparison of spectroscopic data with those for the related [OC-6-13][OsF2(CO)2L2] (L=phosphine). The X-ray structural characterisation of [OC-6-33][OsCl2(CO)2(PEt3)2] represents the first structural characterisation for this class of complex.  相似文献   

20.
In chloroform, [ZrCl4·2(MeO)3PO] exists in both cis- and trans-isomeric forms. Three reactions can be envisaged in the presence of excess (MeO)3PO = L: (1) cis-[ZrCl4·2L] + *L?cis-[ZrCl4·L*L]+ L; (2) trans-[ZrCl4·2L] + *L ? trans-[ZrCl4·L*L] + L; (3) cis-[ZrCl4·2L]? trans-[ZrCl4·2L]. To distinguish between these possible reaction pathways, we have used 2D 1H-NMR spectroscopy. For the first time, variable-pressure 2D exchange spectra were used for mechanistic assignments. cis/trans-Isomerisation was found to be the fastest reaction (in CHCl3/CDCl3), with a small acceleration at higher pressure: it is concluded to be an intramolecular process with a slightly contracted six-coordinate transition state. The intermolecular (MeO)3PO exchange on the cis- and trans-isomer are second-order processes and are strongly accelerated by increased pressure: Ia mechanisms are suggested without ruling out limiting A mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号