首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let Gτ be the topological group of orientation preserving homeomorphisms of the circle, and Gδ the same group with the discrete topology. Motivated by the classical problem of reducing a circle bundle with structure group Gτ to a totally disconnected subgroup KGδ, and more currently, applications to mapping class groups, we analyze, in a homological algebra setting, the role played by the Topological and Discrete Euler Classes. In particular we describe the Discrete Euler Class of G, and any of its subgroups K, explicitly as a group extension. We apply our constructions to show that the values of the Discrete Euler Class are bounded on any space, and we state triviality and non-triviality conditions for its powers in the based mapping class groups.  相似文献   

2.
Generalized Thrackle Drawings of Non-bipartite Graphs   总被引:1,自引:0,他引:1  
A graph drawing is called a generalized thrackle if every pair of edges meets an odd number of times. In a previous paper, we showed that a bipartite graph G can be drawn as a generalized thrackle on an oriented closed surface M if and only if G can be embedded in M. In this paper, we use Lins’ notion of a parity embedding and show that a non-bipartite graph can be drawn as a generalized thrackle on an oriented closed surface M if and only if there is a parity embedding of G in a closed non-orientable surface of Euler characteristic χ(M)−1. As a corollary, we prove a sharp upper bound for the number of edges of a simple generalized thrackle.  相似文献   

3.
Let X⊂ℙ N be either a threefold of Calabi–Yau or of general type (embedded with r K X ). In this article we give lower and upper bounds, linear on the degree of X and N, for the Euler number of X. As a corollary we obtain the boundedness of the region described by the Chern ratios of threefolds with ample canonical bundle and a new upper bound for the number of nodes of a complete intersection threefold. Received: 26 April 2000 / Revised version: 20 November 2000  相似文献   

4.
The third edge-connectivity λ3(G) of a graph G is defined as the minimum cardinality over all sets of edges, if any, whose deletion disconnects G and each component of the resulting graph has at least 3 vertices. An upper bound has been established for λ3(G) whenever λ3(G) is well-defined. This paper first introduces two combinatorial optimization concepts, that is, maximality and superiority, of λ3(G), and then proves the Ore type sufficient conditions for G to be maximally and super third edge-connected. These concepts and results are useful in network reliability analysis.  相似文献   

5.
The total graph T(G) of a multigraph G has as its vertices the set of edges and vertices of G and has an edge between two vertices if their corresponding elements are either adjacent or incident in G. We show that if G has maximum degree Δ(G), then T(G) is (2Δ(G) − 1)-choosable. We give a linear-time algorithm that produces such a coloring. The best previous general upper bound for Δ(G) > 3 was , by Borodin et al. When Δ(G) = 4, our algorithm gives a better upper bound. When Δ(G)∈{3,5,6}, our algorithm matches the best known bound. However, because our algorithm is significantly simpler, it runs in linear time (unlike the algorithm of Borodin et al.).  相似文献   

6.
A cyclic coloration of a planar graph G is an assignment of colors to the points of G such that for any face bounding cycle the points of F have different colors. We observe that the upper bound 2ρ*(G), due to O. Ore and M. D. Plummer, can be improved to ρ*(G) + 9 when G is 3-connected (ρ* denotes the size of a maximum face). The proof uses two principal tools: the theory of Euler contributions and recent results on contractible lines in 3-connected graphs by K. Ando, H. Enomoto and A. Saito.  相似文献   

7.
 We say that a graph G is Class 0 if its pebbling number is exactly equal to its number of vertices. For a positive integer d, let k(d) denote the least positive integer so that every graph G with diameter at most d and connectivity at least k(d) is Class 0. The existence of the function k was conjectured by Clarke, Hochberg and Hurlbert, who showed that if the function k exists, then it must satisfy k(d)=Ω(2 d /d). In this note, we show that k exists and satisfies k(d)=O(2 2d ). We also apply this result to improve the upper bound on the random graph threshold of the Class 0 property. Received: April 19, 1999 Final version received: February 15, 2000  相似文献   

8.
In a complete bipartite decomposition π of a graph, we consider the number ϑ(v;π) of complete bipartite subgraphs incident with a vertex v. Let ϑ(G)= ϑ(v;π). In this paper the exact values of ϑ(G) for complete graphs and hypercubes and a sharp upper bound on ϑ(G) for planar graphs are provided, respectively. An open problem proposed by P.C. Fishburn and P.L. Hammer is solved as well.  相似文献   

9.
In this paper, we give the upper bound and lower bound ofk-th largest eigenvalue λk of the Laplacian matrix of a graphG in terms of the edge number ofG and the number of spanning trees ofG. This research is supported by the National Natural Science Foundation of China (Grant No.19971086) and the Doctoral Program Foundation of State Education Department of China.  相似文献   

10.
Let G be a permutation group on a set Ω with no fixed points in,and m be a positive integer.Then the movement of G is defined as move(G):=sup Γ {|Γg\Γ| | g ∈ G}.It was shown by Praeger that if move(G) = m,then |Ω| 3m + t-1,where t is the number of G-orbits on.In this paper,all intransitive permutation groups with degree 3m+t-1 which have maximum bound are classified.Indeed,a positive answer to her question that whether the upper bound |Ω| = 3m + t-1 for |Ω| is sharp for every t > 1 is given.  相似文献   

11.
Consider the problem of three point vortices (also called Helmholtz’ vortices) on a plane, with arbitrarily given vorticities. The interaction between vortices is proportional to 1/r, where r is the distance between two vortices. The problem has 2 equilateral and at most 3 collinear normalized relative equilibria. This 3 is the optimal upper bound. Our main result is that the above standard statements remain unchanged if we consider an interaction proportional to r b, for any b < 0. For 0 < b < 1, the optimal upper bound becomes 5. For positive vorticities and any b < 1, there are exactly 3 collinear normalized relative equilibria. The case b = −2 of this last statement is the well-known theorem due to Euler: in the Newtonian 3-body problem, for any choice of the 3 masses, there are 3 Euler configurations (also known as the 3 Euler points). These small upper bounds strengthen the belief of Kushnirenko and Khovanskii [18]: real varieties defined by simple systems should have a simple topology. We indicate some hard conjectures about the configurations of relative equilibrium and suggest they could be attacked within the quasi-polynomial framework.  相似文献   

12.
Let k be an algebraically closed field and X a smooth projective variety defined over k. Let EG be a principal G–bundle over X, where G is an algebraic group defined over k, with the property that for every smooth curve C in X the restriction of EG to C is the trivial G–bundle. We prove that the principal G–bundle EG over X is trivial. We also give examples of nontrivial principal bundle over a quasi-projective variety Y whose restriction to every smooth curve in Y is trivial.  相似文献   

13.
We present an upper bound O(n 2 ) for the mixing time of a simple random walk on upper triangular matrices. We show that this bound is sharp up to a constant, and find tight bounds on the eigenvalue gap. We conclude by applying our results to indicate that the asymmetric exclusion process on a circle indeed mixes more rapidly than the corresponding symmetric process. Received: 25 January 1999 / Revised version: 17 September 1999 / Published online: 14 June 2000  相似文献   

14.
Fix a C principal G–bundle E0G{E^0_G} on a compact connected Riemann surface X, where G is a connected complex reductive linear algebraic group. We consider the gradient flow of the Yang–Mills–Higgs functional on the cotangent bundle of the space of all smooth connections on E0G{E^0_G}. We prove that this flow preserves the subset of Higgs G–bundles, and, furthermore, the flow emanating from any point of this subset has a limit. Given a Higgs G–bundle, we identify the limit point of the integral curve passing through it. These generalize the results of the second named author on Higgs vector bundles.  相似文献   

15.
The oriented chromatic number χo(G ) of an oriented graph G = (V, A) is the minimum number of vertices in an oriented graph H for which there exists a homomorphism of G to H . The oriented chromatic number χo(G) of an undirected graph G is the maximum of the oriented chromatic numbers of all the orientations of G. This paper discusses the relations between the oriented chromatic number and the acyclic chromatic number and some other parameters of a graph. We shall give a lower bound for χo(G) in terms of χa(G). An upper bound for χo(G) in terms of χa(G) was given by Raspaud and Sopena. We also give an upper bound for χo(G) in terms of the maximum degree of G. We shall show that this upper bound is not far from being optimal. © 1997 John Wiley & Sons, Inc.  相似文献   

16.
 Given a graph G with n vertices and stability number α(G), Turán's Theorem gives a lower bound on the number of edges in G. Furthermore, Turán has proved that the lower bound is only attained if G is the union of α(G) disjoint balanced cliques. We prove a similar result for the 2-stability number α2(G) of G, which is defined as the largest number of vertices in a 2-colorable subgraph of G. Given a graph G with n vertices and 2-stability number α2(G), we give a lower bound on the number of edges in G and characterize the graphs for which this bound is attained. These graphs are the union of isolated vertices and disjoint balanced cliques. We then derive lower bounds on the 2-stability number, and finally discuss the extension of Turán's Theorem to the q-stability number, for q>2. Received: July 21, 1999 Final version received: August 22, 2000 Present address: GERAD, 3000 ch. de la Cote-Ste-Catherine, Montreal, Quebec H3T 2A7, Canada. e-mail: Alain.Hertz@gerad.ca  相似文献   

17.
Upper bound of the third edge-connectivity of graphs   总被引:6,自引:0,他引:6  
Let G be a simple connected graph of order n≥6. The third edge-connectivity of G is defined as the minimum cardinality over all the sets of edges, if any, whose deletion disconnects G and every component of the resulting graph has at least 3 vertices. In this paper, we first characterize those graphs whose third-edge connectivity is well defined, then establish the tight upper bound for the third edge-connectivity.  相似文献   

18.
For a finite solvable group G and prime number p, we use elementary methods to obtain an upper bound for \mathfrak mp(G){\mathfrak {m}_{p}(G)} , defined as the number of maximal subgroups of G whose index in G is a power of p. From this we derive an upper bound on the total number of maximal subgroups of a finite solvable group in terms of its order. This bound improves existing bounds, and we identify conditions on the order of a finite solvable group under which this bound is best possible.  相似文献   

19.
A circle pattern is a configuration of circles in the plane whose combinatorics is given by a planar graph G such that to each vertex of G corresponds a circle. If two vertices are connected by an edge in G, the corresponding circles intersect with an intersection angle in (0, π). Two sequences of circle patterns are employed to approximate a given conformal map g and its first derivative. For the domain of g we use embedded circle patterns where all circles have the same radius decreasing to 0 and with uniformly bounded intersection angles. The image circle pattern has the same combinatorics and intersection angles and is determined from boundary conditions (radii or angles) according to the values of g′ (|g′| or arg g′). For quasicrystallic circle patterns the convergence result is strengthened to C -convergence on compact subsets.   相似文献   

20.
A k-dimensional box is a Cartesian product R 1 × · · · × R k where each R i is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. That is, two vertices are adjacent if and only if their corresponding boxes intersect. A circular arc graph is a graph that can be represented as the intersection graph of arcs on a circle. We show that if G is a circular arc graph which admits a circular arc representation in which no arc has length at least p(\fraca-1a){\pi(\frac{\alpha-1}{\alpha})} for some a ? \mathbbN 3 2{\alpha\in\mathbb{N}_{\geq 2}}, then box(G) ≤ α (Here the arcs are considered with respect to a unit circle). From this result we show that if G has maximum degree D < ?\fracn(a-1)2a?{\Delta < \lfloor{\frac{n(\alpha-1)}{2\alpha}}\rfloor} for some a ? \mathbbN 3 2{\alpha \in \mathbb{N}_{\geq 2}}, then box(G) ≤ α. We also demonstrate a graph having box(G) > α but with D = n\frac(a-1)2a+ \fracn2a(a+1)+(a+2){\Delta=n\frac{(\alpha-1)}{2\alpha}+ \frac{n}{2\alpha(\alpha+1)}+(\alpha+2)}. For a proper circular arc graph G, we show that if D < ?\fracn(a-1)a?{\Delta < \lfloor{\frac{n(\alpha-1)}{\alpha}}\rfloor} for some a ? \mathbbN 3 2{\alpha\in \mathbb{N}_{\geq 2}}, then box(G) ≤ α. Let r be the cardinality of the minimum overlap set, i.e. the minimum number of arcs passing through any point on the circle, with respect to some circular arc representation of G. We show that for any circular arc graph G, box(G) ≤ r + 1 and this bound is tight. We show that if G admits a circular arc representation in which no family of k ≤ 3 arcs covers the circle, then box(G) ≤ 3 and if G admits a circular arc representation in which no family of k ≤ 4 arcs covers the circle, then box(G) ≤ 2. We also show that both these bounds are tight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号