首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relatively few correlations are available for non-Newtonian fluid flows through packed beds, even though such fluids are frequently used in industry. In this paper, a correlation is presented for yield stress fluid flow through packed beds. The correlation is developed by introducing the yield stress model in place of the Newtonian model used in deriving Erguns equation. The resulting model has three parameters that are functions of the geometry and roughness of the particle surfaces. Two of the parameters can be deduced in the limit as the yield stress becomes negligible and the model reduces to Erguns equation for Newtonian fluids. The third model parameter is determined from experimental data. The correlation relates a defined friction factor to the dimensionless Reynolds and Hedstrom numbers and can be used to predict pressure drop for flow of a yield stress fluid through a packed bed of spherical particles. Conditions for flow or no-flow are also determined in the correlation. Comparison of model calculations, between a Newtonian and a yield stress fluid for flow penetration into a packed bed of spheres, shows the yield stress fluid initially performs similar to the Newtonian fluid, at large Reynolds numbers. At lower Reynolds numbers the yield stress effect becomes important and the flow rate significantly decreases when compared to the Newtonian fluid.  相似文献   

2.
A new analytical derivation for momentum transport during laminar flow through granular porous media is discussed and some of its implied results described. In the very low Reynolds number regime fully developed laminar flow is assumed and in the higher laminar Reynolds number regime the Forchheimer (non-Darcy) effect is modelled through reference to form drag induced by the solid constituents of the porous medium. The results are compared to the Ergun equation, which is empirically based on experimental measurements, and the correspondence is shown to be remarkably close.  相似文献   

3.
Random packed beds have more complex interior structure than structured beds and are widely used in industry and engineering.CFD simulation was carried out to investigate and analyze the local flow and heat transfer in a 120-sphere random packed bed.3D Navier-Stokes equation was solved with a finite volume formulation based on the Chimera meshing technique.Investigation was focused on low Reynolds number flow(Re=4.6-56.2),which typically occurs in packed bed reactors in bio-chemical fields.Detailed temperature field information was obtained.Inhomogeneity of flow and heat transfer due to the non-uniform distribution of void fraction was discussed and analyzed.  相似文献   

4.
We present a theoretical model of the behavior of a concentrated electrorheological fluid (ERF) which explicitly takes into account the effects of conductivity. The increase in shear viscosity under an electric field is due to a layered structure between the electrodes, made up of the remnants of particle chains adhering to the electrodes by electrostatic image forces, and a freely flowing liquid layer where all the shear flow is concentrated. This layered model can explain the variation of electric current with shear rate, as well as the rheological response of a dynamic yield stress proportional to the square of the applied electric field.  相似文献   

5.
An electrorheological (ER) response is defined as the dramatic change in rheological properties of a suspension of small particles due to the application of a large electric field transverse to the direction of flow. ER fluids are typically composed of nonconducting or semiconducting particles dispersed in a nonconducting continuous phase. A sufficiently large electric field will cause ER fluids to solidify, giving rising to a yield stress. Many applications in torque and stress transfer devices were proposed employing the reversible yielding behavior of ER fluids. Successful applications depend on a large yield stress of ER fluids and therefore accurate measurements of the yield stress of ER fluids are required. Reported experimental yield stresses of ER fluids have been dynamic yield stresses obtained by extrapolating the shear stress–shear rate data to zero-shear rate. It would be very helpful to the understanding of ER behaviors and the applications of ER fluids to be able to measure the static yield stress of ER fluids accurately. The slotted plate technique has been shown to be a successful method to determine the static yield stress of suspensions. The values obtained via the slotted plate method are static yield stress as the platform is designed for extremely low-speed motion. In this study, we modified the slotted plate device for the application of large electric fields and measured the static yield stress of TiO2 ER fluids under various electric fields. The measured static yield stress values are also compared with the static yield stress values from a commercial rheometer.  相似文献   

6.
Textile is one of the main components in the municipal waste which is to be diverted from landfill for material and energy recovery. As an initial investigation for energy recovery from textile residues, the combustion of cotton fabrics with a minor fraction of polyester was investigated in a packed bed combustor for air flow rates ranging from 117 to 1638 kg/m2 h (0.027–0.371 m/s). Tests were also carried out in order to evaluate the co-combustion of textile residues with two segregated waste materials: waste wood and cardboard.

Textile residues showed different combustion characteristics when compared to typical waste materials at low air flow rates below 819 kg/m2 h (0.186 m/s). The ignition front propagated fast along the air channels randomly formed between packed textile particles while leaving a large amount of unignited material above. This resulted in irregular behaviour of the temperature profile, ignition rate and the percentage of weight loss in the ignition propagation stage. A slow smouldering burn-out stage followed the ignition propagation stage. At air flow rates of 1200–1600 kg/m2 h (0.272–0.363 m/s), the bed had a maximum burning rate of about 240 kg/m2 h consuming most of the combustibles in the ignition propagation stage. More uniform combustion with an increased burning rate was achieved when textile residues were co-burned with cardboard that had a similar bulk density.  相似文献   


7.
In this work the effects of electrode morphology on the slit flow of an electrorheological (ER) fluid via laser Doppler anemometry (LDA) are studied. For this purpose, oblique and corrugated electrodes were used. Under a.c.-conditions the ER-effect with the oblique and corrugated electrodes is greater in comparison to the case of smooth electrodes at the same voltage and pressure drop. An average factor of 2.0 and 2.5 (in the range 1–5 kV) describes the increase in the ER-effect for the oblique and corrugated electrodes, respectively. This increase in ER-effect is accompanied by a decrease in electric current. Under d.c.-conditions the ER-effect with the oblique and corrugated electrodes is somewhat better than with the smooth electrodes but only at a very low field strength. Increasing the field strength leads to a decreased ER-effect (in comparison to the smooth electrodes). This decrease of the ER-effect is always accompanied by a decrease in electric current (d.c.-field).  相似文献   

8.
The application of a volume average Navier-Stokes equation for the prediction of pressure drop in packed beds consisting of uniform spherical particles is presented. The development of the bed permeability from an assumed porous microstructure model is given. The final model is quasi-empirical in nature, and is able to correlate a wide variety of literature data over a large Reynolds number range. In beds with wall effects present the model correlates experimental data with an error of less than 10%. Numerical solutions of the volume averaged equation are obtained using a penalty finite element method.Nomenclatures d length of a representative unit cell - d e flow length in Representative Unit Cell - d p characteristic pore size - D T column diameter - D P equivalent particle diameter - e v energy loss coefficient for elbow - f app apparent friction factor - f v packed bed friction factor, defined by Equation (30) - F term representing impermeability of the porous medium - I integral defined by Equation (3) - L length of packed column - N Number of RUC in model microstructure - P pressure - P interstitial pressure - P pressure deviation - Rep Reynolds number,v p d p/ - Res Reynolds number,v s d/gm - Reb Reynolds number,v s D p/ - S fs fluid solid contact area - T tortuosity - v fluid velocity - v velocity deviation - v p velocity in a pore - v s superficial velocity in the medium - v interstitial velocity - V o total volume of representative unit cell - V pore volume of representative unit cell - change in indicated property - u normal vector onS fs - porosity - viscosity - density - coefficient in unconsolidated permeability model  相似文献   

9.
 A comparison is made between two types of solid particles used in electrorheological fluids: particles with homogeneous electrical properties versus layered particles with a semi-conducting core surrounded by an outer layer of lower conductivity. Rheological measurements of these suspensions under steady shear and d.c. electric field show that the layered particle system produces the same yield stress but with a substantially reduced electric current. X-ray spectroscopic analysis confirms that these particles have a thin layer of SiOx on the outer surface which causes the reduction in conductivity. Measurement of the dielectric permittivity followed by analysis using the Maxwell-Wagner model of polarization indicates that the conductivity of the outer layer is about 0.62 times that of the core region. Received: 13 January 1999 Accepted: 26 July 1999  相似文献   

10.
The present work describes the mass transfer process between a moving fluid and a slightly soluble cylinder, with the axis perpendicular to flow direction, buried in a packed bed of small inert particles, with uniform voidage. Fluid flow in the packed bed around the cylinder was assumed to follow Darcy’s law and, at each point, dispersion of solute was assumed to be determined by radial and axial dispersion coefficients, in the cross-stream and streamwise directions, respectively. Numerical solutions of the differential equation describing solute mass conservation were undertaken to obtain the concentration field near the soluble surface and the mass transfer flux was integrated to give the Sherwood number as a function of the relevant parameters. Mathematical expressions are proposed that describes accurately the dependence found numerically between the value of the Sherwood number and the values of Peclet number, Schmidt number and the ratio between the diameter of cylinder and the diameter of inerts.  相似文献   

11.
We study the action of an electric field on a Bingham fluid from the point of view of existence and uniqueness of solutions. We also give an upper bound for the stopping time.  相似文献   

12.
13.
14.
The development of a theoretical model for the prediction of velocity and pressure drop for the flow of a viscous power law fluid through a bed packed with uniform spherical particles is presented. The model is developed by volume averaging the equation of motion. A porous microstructure model based on a cell model is used. Numerical solution of the resulting equation is effected using a penalty Galerkin finite element method. Experimental pressure drop values for dilute solutions of carboxymethylcellulose flowing in narrow tubes packed with uniformly sized spherical particles are compared to theoretical predictions over a range of operating conditions. Overall agreement between experimental and theoretical values is within 15%. The extra pressure drop due to the presence of the wall is incorporated directly into the model through the application of the no-slip boundary condition at the container wall. The extra pressure drop reaches a maximum of about 10% of the bed pressure drop without wall effect. The wall effect increases as the ratio of tube diameter to particle diameter decreases, as the Reynolds number decreases and as the power law index increases.  相似文献   

15.
The mean and turbulent structures of turbulent swirling flow in a heated annulus have been measured. Both forced and free vortex swirling flows were generated, and the outer wall of the test section was heated uniformly. The maximum swirl number was 1.39, Reynolds numbers were up to 200000, and heat input was 10.5 kW. Mean and turbulent velocity components, air and wall temperatures, and wall static pressures were all measured. Hot-film techniques were developed to measure turbulence. From these parameters, the flow and temperature fields, pressure distribution, and heat transfer coefficients were determined. The mechanisms of heat transfer were identified.  相似文献   

16.
The flow characteristics in a spouted-fluid bed differ from those in spouted or fluidized beds because of the injection of the spouting gas and the introduction of a fluidizing gas. The flow behavior of gas-solid phases was predicted using the Eulerian-Eulerian two-fluid model (TFM) approach with kinetic theory for granular flow to obtain the flow patterns in spouted-fluid beds. The gas flux and gas incident angle have a significant influence on the porosity and particle concentration in gas-solid spouted-fluid beds. The fluidizing gas flux affects the flow behavior of particles in the fountain. In the spouted-fluid bed, the solids volume fraction is low in the spout and high in the annulus. However, the solids volume fraction is reduced near the wall.  相似文献   

17.
A system of nonlinear equations for describing the perturbations of the pressure and radius in fluid flow through a viscoelastic tube is derived. A differential relation between the pressure and the radius of a viscoelastic tube through which fluid flows is obtained. Nonlinear evolutionary equations for describing perturbations of the pressure and radius in fluid flow are derived. It is shown that the Burgers equation, the Korteweg-de Vries equation, and the nonlinear fourth-order evolutionary equation can be used for describing the pressure pulses on various scales. Exact solutions of the equations obtained are discussed. The numerical solutions described by the Burgers equation and the nonlinear fourth-order evolutionary equation are compared.  相似文献   

18.
An experimental study of steam injection into a porous media was carried out in a 2-dimensional plane porous channel. The steam was injected into a uniform downward water flow in a vertically aligned porous channel. The steam-water interface was carefully observed to understand the underlying physics. Two steam injection rate bounds were found for a given water flow rate and water subcooling. The upper bound is the steam flow rate at which the steam zone grows without limit and the lower bound is the steam flow rate at which a steam zone is just initiated. The bounds were determined experimentally for a porous channel with different permeabilities and thermal conductivities. For large particle size, chaotic oscillation of steam water interface was observed. The oscillation is believed to enhance heat and momentum transfer mechanisms. The steam zone size and shape were measured to evaluate heat transfer characteristics. The average Nusselt number is presented in terms of steam and water Reynolds numbers and the Stefan number.  相似文献   

19.
20.
Because of their advantages of high efficiency and low cost, numerical research methods for large-scale circulating fluidized bed (CFB) apparatus are gaining ever more importance. This article presents a numer- ical study of gas-solid flow dynamics using the Eulerian granular multiphase model with a drag coefficient correction based on the energy-minimization multi-scale (EMMS) model. A three-dimensional, full-loop, time-dependent simulation of the hydrodynamics of a dense CFB apparatus is performed. The process parameters (e.g., operating and initial conditions) are provided in accordance with the real experiment to enhance the accuracy of the simulation. The axial profiles of the averaged solid volume fractions and the solids flux at the outlet of the cyclone are in reasonable agreement with experimental data, thereby verifying the applicability of the mathematical and physical models. As a result, the streamline in the riser and standpipe as well as the solids distribution contours at the cross sections is analyzed. Computational fluid dynamics (CFD) serves as a basis for CFB modeling to help resolve certain issues long in dispute but difficult to address experimentally. The results of this study provide the basis of a general approach to describing dynamic simulations of gas-solid flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号