首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let G be a finite group with derived subgroup of rank r. We prove that |G: Z 2(G)| ≤ |G′|2r . Motivated by the results of I. M. Isaacs in [5] we show that if G is capable then |G: Z(G)| ≤ |G′|4r . This answers a question of L. Pyber. We prove that if G is a capable p-group then the rank of G/Z(G) is bounded above in terms of the rank of G′.  相似文献   

2.
Chintamani  M. N.  Moriya  B. K.  Gao  W. D.  Paul  P.  Thangadurai  R. 《Archiv der Mathematik》2012,98(2):133-142
Let G be a finite abelian group (written additively) of rank r with invariants n 1, n 2, . . . , n r , where n r is the exponent of G. In this paper, we prove an upper bound for the Davenport constant D(G) of G as follows; D(G) ≤ n r + n r-1 + (c(3) − 1)n r-2 + (c(4) − 1) n r-3 + · · · + (c(r) − 1)n 1 + 1, where c(i) is the Alon–Dubiner constant, which depends only on the rank of the group \mathbb Znri{{\mathbb Z}_{n_r}^i}. Also, we shall give an application of Davenport’s constant to smooth numbers related to the Quadratic sieve.  相似文献   

3.
Let G be a finite abelian group and its Sylow p-subgroup a direct product of copies of a cyclic group of order p~r,i.e.,a finite homocyclic abelian group.LetΔ~n (G) denote the n-th power of the augmentation idealΔ(G) of the integral group ring ZG.The paper gives an explicit structure of the consecutive quotient group Q_n(G)=Δ~n(G)/Δ~(n 1)(G) for any natural number n and as a consequence settles a problem of Karpilovsky for this particular class of finite abelian groups.  相似文献   

4.
《代数通讯》2013,41(4):1587-1601
Abstract

First, we give a necessary and sufficient condition for torsion-free finite rank subgroups of arbitrary abelian groups to be purifiable. An abelian group G is said to be a strongly ADE decomposable group if there exists a purifiable T(G)-high subgroup of G. We use a previous result to characterize ADE decomposable groups of finite torsion-free rank. Finally, in an extreme case of strongly ADE decomposable groups, we give a necessary and sufficient condition for abelian groups of finite torsion-free rank to be splitting.  相似文献   

5.
We investigate the problem whether every closed ideal in the group algebrasA(G) is generated by a single function. For the algebrasA r(R n),n≧6, we give a negative solution. We also obtain some negative results for general locally compact abelian groups. This paper is a part of the author’s Ph. D. thesis prepared at the Hebrew University of Jerusalem under the supervision of Professor Y. Katznelson, to whom the author wishes to express his thanks for his helpful guidance, and valuable remarks.  相似文献   

6.
Abstract A group G has finite Hirsch-Zaicev rank rhz(G) = r if G has an ascending series whose factors are either infinite cyclic or periodic and if the number of infinite cyclic factors is exactly r. The authors discuss groups with finite Hirsch-Zaicev rank and the connection between this and groups having finite section p-rank for some prime p, or p=0. Groups all of whose abelian subgroups are of bounded rank are also discussed. Keywords: p-rank, locally generalized radical group, Hirsch-Zaicev rank, torsion-free rank, rank Mathematics Subject Classification (2000): 20F19, 20E25, 20E15  相似文献   

7.
For an abelian group G, the Davenport constant D(G) is defined to be the smallest natural number k such that any sequence of k elements in G has a nonempty subsequence whose sum is zero (the identity element). Motivated by some recent developments around the notion of Davenport constant with weights, we study them in some basic cases. We also define a new combinatorial invariant related to (ℤ/nℤ) d , more in the spirit of some constants considered by Harborth and others and obtain its exact value in the case of (ℤ/nℤ)2 where n is an odd integer.  相似文献   

8.
Let F n be the free group of rank n, and let Aut+(F n ) be its special automorphism group. For an epimorphism π : F n G of the free group F n onto a finite group G we call the standard congruence subgroup of Aut+(F n ) associated to G and π. In the case n = 2 we fully describe the abelianization of Γ+(G, π) for finite abelian groups G. Moreover, we show that if G is a finite non-perfect group, then Γ+(G, π) ≤ Aut+(F 2) has infinite abelianization.  相似文献   

9.
Let G denote a finite group and cd (G) the set of irreducible character degrees of G. Bertram Huppert conjectured that if H is a finite nonabelian simple group such that cd (G) = cd (H), then G ≅ H × A, where A is an abelian group. Huppert verified the conjecture for PSp4(q) when q = 3, 4, 5, or 7. In this paper, we extend Huppert’s results and verify the conjecture for PSp4(q) for all q. This demonstrates progress toward the goal of verifying the conjecture for all nonabelian simple groups of Lie type of rank two.  相似文献   

10.
LetR be ring strongly graded by an abelian groupG of finite torsion-free rank. Lete be the identity ofG, andR e the component of degreee ofR. AssumeR e is a Jacobson ring. We prove that graded subrings ofR are again Jacobson rings if eitherR e is a left Noetherian ring orR is a group ring. In particular we generalise Goldie and Michlers’s result on Jacobson polycyclic group rings, and Gilmer’s result on Jacobson commutative semigroup rings of finite torsion-free rank.  相似文献   

11.
We introduce the class of operators on Banach spaces having property (H) and study Weyl’s theorems, and related results for operators which satisfy this property. We show that a- Weyl’s theorem holds for every decomposable operator having property (H). We also show that a-Weyl’s theorem holds for every multiplier T of a commutative semi-simple regular Tauberian Banach algebra. In particular every convolution operator Tμ of a group algebra L1(G), G a locally compact abelian group, satisfies a-Weyl’s theorem. Similar results are given for multipliers of other important commutative Banach algebras.  相似文献   

12.
Let A be an infinite set that generates a group G. The sphere S A (r) is the set of elements of G for which the word length with respect to A is exactly r. We say G admits all finite transitions if for every r ≥ 2 and every finite symmetric subset W ì G\{e}{W \subset G{\setminus}\{e\}}, there exists an A with S A (r) = W. In this paper we determine which countable abelian groups admit all finite transitions. We also show that \mathbbRn{\mathbb{R}^n} and the finitary symmetric group on \mathbbN{\mathbb{N}} admit all finite transitions.  相似文献   

13.
A group is said to have finite (special) rank ≤ sif all of its finitely generated subgroups can be generated byselements. LetGbe a locally finite group and suppose thatH/HGhas finite rank for all subgroupsHofG, whereHGdenotes the normal core ofHinG. We prove that thenGhas an abelian normal subgroup whose quotient is of finite rank (Theorem 5). If, in addition, there is a finite numberrbounding all of the ranks ofH/HG, thenGhas an abelian subgroup whose quotient is of finite rank bounded in terms ofronly (Theorem 4). These results are based on analogous theorems on locally finitep-groups, in which case the groupGis also abelian-by-finite (Theorems 2 and 3).  相似文献   

14.
LetA={a 1, …,a k} and {b 1, …,b k} be two subsets of an abelian groupG, k≤|G|. Snevily conjectured that, when |G| is odd, there is a numbering of the elements ofB such thata i+b i,1≤ik are pairwise distinct. By using a polynomial method, Alon affirmed this conjecture for |G| prime, even whenA is a sequence ofk<|G| elements. With a new application of the polynomial method, Dasgupta, Károlyi, Serra and Szegedy extended Alon’s result to the groupsZ p r andZ p rin the casek<p and verified Snevily’s conjecture for every cyclic group. In this paper, by employing group rings as a tool, we prove that Alon’s result is true for any finite abelianp-group withk<√2p, and verify Snevily’s conjecture for every abelian group of odd order in the casek<√p, wherep is the smallest prime divisor of |G|. This work has been supported partly by NSFC grant number 19971058 and 10271080.  相似文献   

15.
 In this paper, we show that under some conditions the existence of a difference set in G implies the existence of another difference set with the same parameters in G′, where G and G′ are abelian groups of the same order. This explains why there are more difference sets in abelian groups of low exponent and high rank than in those of high exponent and low rank. Received: September 1, 1997 / Revised: March 24, 1998  相似文献   

16.
Let G be a finitely generated accessible group. We will study the homology of G with coefficients in the left G-module H1(G;Z[G]). This G-module may be identified with the G-module of continuous functions with values in Z on the G-space of ends of G, quotiented by the constant functions. The main result is as follows: Suppose G is infinite, then the abelian group H1(G;H1(G;Z[G])) has rank 1 if G has a free subgroup of finite index and it has rank 0 if G has not.  相似文献   

17.
The torsion conjecture says: for any abelian variety A defined over a number field k, the order of the torsion subgroup of A(k) is bounded by a constant C(k,d) which depends only on the number field k and the dimension d of the abelian variety. The torsion conjecture remains open in general. However, in this paper, a short argument shows that the conjecture is true for more general fields if we consider linear groups instead of abelian varieties. If G is a connected linear algebraic group defined over a field k which is finitely generated over Q,Г is a torsion subgroup of G(k). Then the order of Г is bounded by a constant C'(k, d) which depends only on k and the dimension d of G.  相似文献   

18.
A mapping ϕ of a groupG to a groupF is said to be polynomial if it trivializes after several consecutive applications of operatorsD h ,hG, defined byD h ϕ(g)=ϕ(g) −1 ϕ(gh). We study polynomial mappings of groups, mainly to nilpotent groups. In particular, we prove that polynomial mappings to a nilpotent group form a group with respect to the elementwise multiplication, and that any polynomial mappingGF to a nilpotent groupF splits into a homomorphismGG’ to a nilpotent groupG’ and a polynomial mappingG’F. We apply the obtained results to prove the existence of the compact/weak mixing decomposition of a Hilbert space under a unitary polynomial action of a finitely generated nilpotent group. This work was supported by NSF, Grants DMS-9706057 and 0070566.  相似文献   

19.
We study the Cohn purity in an abelian group regarded as a left module over its endomorphism ring. We prove that if a finite rank torsion-free abelian group G is quasiequal to a direct sum in which all summands are purely simple modules over their endomorphism rings then the module E(G) G is purely semisimple. This theorem makes it possible to construct abelian groups of any finite rank which are purely semisimple over their endomorphism rings and it reduces the problem of endopure semisimplicity of abelian groups to the same problem in the class of strongly indecomposable abelian groups.  相似文献   

20.
Yiftach Barnea 《代数通讯》2013,41(3):1293-1303
Abstract

Let  be a simple classical Lie algebra over a field F of characteristic p > 7. We show that > d () = 2, where d() is the number of generators of . Let G be a profinite group. We say that G has lower rankl, if there are {G α} open subgroups which from a base for the topology at the identity and each G α is generated (topologically) by no more than l elements. There is a standard way to associate a Lie algebra L(G) to a finitely generated (filtered) pro-p group G. Suppose L(G) ?  ? tF p [t], where  is a simple Lie algebra over F p , the field of p elements. We show that the lower rank of G is ≤ d () + 1. We also show that if  is simple classical of rank r and p > 7 or p 2r 2 ? r, then the lower rank is actually 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号