首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various difficulties have been encountered in using decision set-based vector maximization methods to solve a multiple objective linear programming problem (MOLP). Motivated by these difficulties, some researchers in recent years have suggested that outcome set-based approaches should instead be developed and used to solve problem (MOLP). In this article, we present a finite algorithm, called the Outer Approximation Algorithm, for generating the set of all efficient extreme points in the outcome set of problem (MOLP). To our knowledge, the Outer Approximation Algorithm is the first algorithm capable of generating this set. As a by-product, the algorithm also generates the weakly efficient outcome set of problem (MOLP). Because it works in the outcome set rather than in the decision set of problem (MOLP), the Outer Approximation Algorithm has several advantages over decision set-based algorithms. It is also relatively easy to implement. Preliminary computational results for a set of randomly-generated problems are reported. These results tangibly demonstrate the usefulness of using the outcome set approach of the Outer Approximation Algorithm instead of a decision set-based approach. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Various difficulties have been encountered in using decision set-based vector maximization methods to solve a multiple-objective linear programming problem (MOLP). Motivated by these difficulties, Benson recently developed a finite, outer-approximation algorithm for generating the set of all efficient extreme points in the outcome set, rather than in the decision set, of problem (MOLP). In this article, we show that the Benson algorithm also generates the set of all weakly efficient points in the outcome set of problem (MOLP). As a result, the usefulness of the algorithm as a decision aid in multiple objective linear programming is further enhanced.  相似文献   

3.
Various computational difficulties arise in using decision set-based vector maximization methods to solve multiple objective linear programming problems. As a result, several researchers have begun to explore the possibility of solving these problems by examining subsets of their outcome sets, rather than of their decision sets. In this article, we present and validate a basic weight set decomposition approach for generating the set of all efficient extreme points in the outcome set of a multiple objective linear program. Based upon this approach, we then develop an algorithm, called the Weight Set Decomposition Algorithm, for generating this set. A sample problem is solved using this algorithm, and the main potential computational and practical advantages of the algorithm are indicated.  相似文献   

4.
The geometric duality theory of Heyde and Löhne (2006) defines a dual to a multiple objective linear programme (MOLP). In objective space, the primal problem can be solved by Benson’s outer approximation method (Benson 1998a,b) while the dual problem can be solved by a dual variant of Benson’s algorithm (Ehrgott et al. 2007). Duality theory then assures that it is possible to find the (weakly) nondominated set of the primal MOLP by solving its dual. In this paper, we propose an algorithm to solve the dual MOLP approximately but within specified tolerance. This approximate solution set can be used to calculate an approximation of the weakly nondominated set of the primal. We show that this set is a weakly ε-nondominated set of the original primal MOLP and provide numerical evidence that this approach can be faster than solving the primal MOLP approximately.  相似文献   

5.
It is not a difficult task to find a weak Pareto or Pareto solution in a multiobjective linear programming (MOLP) problem. The difficulty lies in finding all these solutions and representing their structure. This paper develops an algorithm for solving this problem. We investigate the solutions and their relationships in the objective space. The algorithm determines finite number of weights, each of which corresponds to a weighted sum problems. By solving these problems, we further obtain all weak Pareto and Pareto solutions of the MOLP and their structure in the constraint space. The algorithm avoids the degeneration problem, which is a major hurdle of previous works, and presents an easy and clear solution structure.  相似文献   

6.
This paper deals with a recently proposed algorithm for obtaining all weak efficient and efficient solutions in a multi objective linear programming (MOLP) problem. The algorithm is based on solving some weighted sum problems, and presents an easy and clear solution structure. We first present an example to show that the algorithm may fail when at least one of these weighted sum problems has not a finite optimal solution. Then, the algorithm is modified to overcome this problem. The modified algorithm determines whether an efficient solution exists for a given MOLP and generates the solution set correctly (if exists) without any change in the complexity.  相似文献   

7.
Approaches for generating the set of efficient extreme points of the decision set of a multiple-objective linear program (P) that are based upon decompositions of the weight set W0 suffer from one of two special drawbacks. Either the required computations are redundant, or not all of the efficient extreme point set is found. This article shows that the weight set for problem (P) can be decomposed into a partition based upon the outcome set Y of the problem, where the elements of the partition are in one-to-one correspondence with the efficient extreme points of Y. As a result, the drawbacks of the decompositions of W0 based upon the decision set of problem (P) disappear. The article explains also how this new partition offers the potential to construct algorithms for solving large-scale applications of problem (P) in the outcome space, rather than in the decision space.  相似文献   

8.
9.
In this paper a multiple objective linear programming (MOLP) problem whose feasible region is the production possibility set with variable returns to scale is proposed. By solving this MOLP problem by multicriterion simplex method, the extreme efficient Pareto points can be obtained. Then the extreme efficient units in data envelopment analysis (DEA) with variable returns to scale, considering the specified theorems and conditions, can be obtained. Therefore, by solving the proposed MOLP problem, the non-dominant units in DEA can be found. Finally, a numerical example is provided.  相似文献   

10.
An interactive approach for solving a multiple objective linear programming (MOLP) problem is presented. This approach assumes that the decision maker (in contrast to the analyst) can establish a (preferential) partial order Pv on the decision variables and a partial order Po on the objective functions. The solution approach presented in this paper requires minimal additional information in its interactive stage. Results are presented for a number of tests: both conceptual development and applicability in solving specific problems have been successfully tested.  相似文献   

11.
This paper modifies the affine-scaling primal algorithm to multiobjective linear programming (MOLP) problems. The modification is based on generating search directions in the form of projected gradients augmented by search directions pointing toward what we refer to as anchoring points. These anchoring points are located on the boundary of the feasible region and, together with the current, interior, iterate, define a cone in which we make the next step towards a solution of the MOLP problem. These anchoring points can be generated in more than one way. In this paper we present an approach that generates efficient anchoring points where the choice of termination solution available to the decision maker at each iteration consists of a set of efficient solutions. This set of efficient solutions is being updated during the iterative process so that only the most preferred solutions are retained for future considerations. Current MOLP algorithms are simplex-based and make their progress toward the optimal solution by following an exterior trajectory along the vertices of the constraints polytope. Since the proposed algorithm makes its progress through the interior of the constraints polytope, there is no need for vertex information and, therefore, the search for an acceptable solution may prove less sensitive to problem size. We refer to the resulting class of MOLP algorithms that are based on the affine-scaling primal algorithm as affine-scaling interior multiobjective linear programming (ASIMOLP) algorithms.  相似文献   

12.
The quadratic stable set problem (QSSP) is a natural extension of the well-known maximum stable set problem. The QSSP is NP-hard and can be formulated as a binary quadratic program, which makes it an interesting case study to be tackled from different optimization paradigms. In this paper, we propose a novel representation for the QSSP through binary decision diagrams (BDDs) and adapt a hybrid optimization approach which integrates BDDs and mixed-integer programming (MIP) for solving the QSSP. The exact framework highlights the modeling flexibility offered through decision diagrams to handle nonlinear problems. In addition, the hybrid approach leverages two different representations by exploring, in a complementary way, the solution space with BDD and MIP technologies. Machine learning then becomes a valuable component within the method to guide the search mechanisms. In the numerical experiments, the hybrid approach shows to be superior, by at least one order of magnitude, than two leading commercial MIP solvers with quadratic programming capabilities and a semidefinite-based branch-and-bound solver.  相似文献   

13.
We consider the target level method for solving linear multi-criterion maximization problems. The method finds an efficient (Pareto-optimal) vector estimate that is closest in the Chebyshev metric to the target level point specified by the decision maker. The proposed method describes (parametrizes and approximates) the efficient set. In the linear case the number of scalar optimization problems needed to describe the set of efficient vector estimates is substantially reduced. A formula is derived which, under certain conditions, can be used to compute efficient vector estimates without solving any optimization problems. An algorithm based on these results is proposed for two-criterion problems.  相似文献   

14.
Finding an efficient or weakly efficient solution in a multiobjective linear programming (MOLP) problem is not a difficult task. The difficulty lies in finding all these solutions and representing their structures. Since there are many convenient approaches that obtain all of the (weakly) efficient extreme points and (weakly) efficient extreme rays in an MOLP, this paper develops an algorithm which effectively finds all of the (weakly) efficient maximal faces in an MOLP using all of the (weakly) efficient extreme points and extreme rays. The proposed algorithm avoids the degeneration problem, which is the major problem of the most of previous algorithms and gives an explicit structure for maximal efficient (weak efficient) faces. Consequently, it gives a convenient representation of efficient (weak efficient) set using maximal efficient (weak efficient) faces. The proposed algorithm is based on two facts. Firstly, the efficiency and weak efficiency property of a face is determined using a relative interior point of it. Secondly, the relative interior point is achieved using some affine independent points. Indeed, the affine independent property enable us to obtain an efficient relative interior point rapidly.  相似文献   

15.
犹豫模糊集允许一个元素属于一个集合的隶属度可以是多个不同的值,是表达决策者之间偏好不一致性的有力工具。针对决策者评价偏差不宜过大的问题,提出了一种基于群体一致性的犹豫模糊多属性决策方法。首先, 我们定义了犹豫模糊元的犹豫度函数,进而定义了犹豫模糊元的一致性指数;在此基础上,构建了基于群体一致性指数最大化的权重优化模型,通过求解优化模型可以得到属性的权重向量。然后,运用灰色关联分析法实现对方案的排序和择优。最后,通过实例分析说明了该方法的可行性和有效性。  相似文献   

16.
Several algorithms are available in the literature for finding the entire set of Pareto-optimal solutions of Multiobjective Linear Programmes (MOLPs). However, all of them are based on active-set methods (simplex-like approaches). We present a different method, based on a transformation of any MOLP into a unique lifted Semidefinite Program (SDP), the solutions of which encode the entire set of Pareto-optimal extreme point solutions of any MOLP. This SDP problem can be solved, among other algorithms, by interior point methods; thus unlike an active set-method, our method provides a new approach to find the set of Pareto-optimal solutions of MOLP.  相似文献   

17.
18.
One way of solving multiple objective mathematical programming problems is finding discrete representations of the efficient set. A modified goal of finding good discrete representations of the efficient set would contribute to the practicality of vector maximization algorithms. We define coverage, uniformity and cardinality as the three attributes of quality of discrete representations and introduce a framework that includes these attributes in which discrete representations can be evaluated, compared to each other, and judged satisfactory or unsatisfactory by a Decision Maker. We provide simple mathematical programming formulations that can be used to compute the coverage error of a given discrete representation. Our formulations are practically implementable when the problem under study is a multiobjective linear programming problem. We believe that the interactive algorithms along with the vector maximization methods can make use of our framework and its tools. Received April 7, 1998 / Revised version received March 1999?Published online November 9, 1999  相似文献   

19.
In this paper we propose the integration of column generation in the revised normal boundary intersection (RNBI) approach to compute a representative set of non-dominated points for multi-objective linear programmes (MOLPs). The RNBI approach solves single objective linear programmes, the RNBI subproblems, to project a set of evenly distributed reference points to the non-dominated set of an MOLP. We solve each RNBI subproblem using column generation, which moves the current point in objective space of the MOLP towards the non-dominated set. Since RNBI subproblems may be infeasible, we attempt to detect this infeasibility early. First, a reference point bounding method is proposed to eliminate reference points that lead to infeasible RNBI subproblems. Furthermore, different initialisation approaches for column generation are implemented, including Farkas pricing. We investigate the quality of the representation obtained. To demonstrate the efficacy of the proposed approach, we apply it to an MOLP arising in radiotherapy treatment design. In contrast to conventional optimisation approaches, treatment design using column generation provides deliverable treatment plans, avoiding a segmentation step which deteriorates treatment quality. As a result total monitor units is considerably reduced. We also note that reference point bounding dramatically reduces the number of RNBI subproblems that need to be solved.  相似文献   

20.
We present an interior Multiple Objective Linear Programming (MOLP) algorithm based on the path-following primal-dual algorithm. In contrast to the simplex algorithm, which generates a solution path on the exterior of the constraints polytope by following its vertices, the path-following primal-dual algorithm moves through the interior of the polytope. Interior algorithms lend themselves to modifications capable of addressing MOLP problems in a way that is quite different from current solution approaches. In addition, moving through the interior of the polytope results in a solution approach that is less sensitive to problem size than simplex-based MOLP algorithms. The modification of the interior single-objective algorithm to MOLP problems, as presented here, is accomplished by combining the step direction vectors generated by applying the single-objective algorithm to each of the cost vectors into a combined direction vector along which we step from the current iterate to the next iterate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号