首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In excitable cells, mitochondria play a key role in the regulation of the cytosolic Ca2+ levels. A dysregulation of the mitochondrial Ca2+ buffering machinery derives in serious pathologies, where neurodegenerative diseases highlight. Since the mitochondrial Na+/Ca2+ exchanger (NCLX) is the principal efflux pathway of Ca2+ to the cytosol, drugs capable of blocking NCLX have been proposed to act as neuroprotectants in neuronal damage scenarios exacerbated by Ca2+ overload. In our search of optimized NCLX blockers with augmented drug-likeness, we herein describe the synthesis and pharmacological characterization of new benzothiazepines analogues to the first-in-class NCLX blocker CGP37157 and its further derivative ITH12575, synthesized by our research group. As a result, we found two new compounds with an increased neuroprotective activity, neuronal Ca2+ regulatory activity and improved drug-likeness and pharmacokinetic properties, such as clog p or brain permeability, measured by PAMPA experiments.  相似文献   

2.
Excessive release of glutamate induces excitotoxicity and causes neuronal damage in several neurodegenerative diseases. Natural products have emerged as potential neuroprotective agents for preventing and treating neurological disorders. Dehydrocorydaline (DHC), an active alkaloid compound isolated from Corydalis yanhusuo, possesses neuroprotective capacity. The present study investigated the effect of DHC on glutamate release using a rat brain cortical synaptosome model. Our results indicate that DHC inhibited 4-aminopyridine (4-AP)-evoked glutamate release and elevated intrasynaptosomal calcium levels. The inhibitory effect of DHC on 4-AP-evoked glutamate release was prevented in the presence of the vesicular transporter inhibitor bafilomycin A1 and the N- and P/Q-type Ca2+ channel blocker ω-conotoxin MVIIC but not the intracellular inhibitor of Ca2+ release dantrolene or the mitochondrial Na+/Ca2+ exchanger inhibitor CGP37157. Moreover, the inhibitory effect of DHC on evoked glutamate release was prevented by the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) inhibitor PD98059. Western blotting data in synaptosomes also showed that DHC significantly decreased the level of ERK1/2 phosphorylation and synaptic vesicle-associated protein synapsin I, the main presynaptic target of ERK. Together, these results suggest that DHC inhibits presynaptic glutamate release from cerebrocortical synaptosomes by suppressing presynaptic voltage-dependent Ca2+ entry and the MAPK/ERK/synapsin I signaling pathway.  相似文献   

3.
Background: This study aimed to produce, purify, structurally elucidate, and explore the biological activities of metabolites produced by Streptomyces (S.) griseus isolate KJ623766, a recovered soil bacterium previously screened in our lab that showed promising cytotoxic activities against various cancer cell lines. Methods: Production of cytotoxic metabolites from S. griseus isolate KJ623766 was carried out in a 14L laboratory fermenter under specified optimum conditions. Using a 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium-bromide assay, the cytotoxic activity of the ethyl acetate extract against Caco2 and Hela cancer cell lines was determined. Bioassay-guided fractionation of the ethyl acetate extract using different chromatographic techniques was used for cytotoxic metabolite purification. Chemical structures of the purified metabolites were identified using mass, 1D, and 2D NMR spectroscopic analysis. Results: Bioassay-guided fractionation of the ethyl acetate extract led to the purification of two cytotoxic metabolites, R1 and R2, of reproducible amounts of 5 and 1.5 mg/L, respectively. The structures of R1 and R2 metabolites were identified as β- and γ-rhodomycinone with CD50 of 6.3, 9.45, 64.8 and 9.11, 9.35, 67.3 µg/mL against Caco2, Hela and Vero cell lines, respectively. Values were comparable to those of the positive control doxorubicin. Conclusions: This is the first report about the production of β- and γ-rhodomycinone, two important scaffolds for synthesis of anticancer drugs, from S. griseus.  相似文献   

4.
Nano-bioremediation application is an ecologically and environmentally friendly technique to overcome the catastrophic situation in soil because of petroleum waste contamination. We evaluated the efficiency of oil-degrading bacterial consortium and silver nanoparticles (AgNPs) with or without fertilizer to remediate soils collected from petroleum waste contaminated oil fields. Physicochemical characteristics of control soil and petroleum contaminated soils were assessed. Four oil-degrading strains, namely Bacillus pumilus (KY010576), Exiguobacteriaum aurantiacum (KY010578), Lysinibacillus fusiformis (KY010586), and Pseudomonas putida (KX580766), were selected based on their in vitrohydrocarbon-degrading efficiency. In a lab experiment, contaminated soils were treated alone and with combined amendments of the bacterial consortium, AgNPs, and fertilizers (ammonium nitrate and diammonium phosphate). We detected the degradation rate of total petroleum hydrocarbons (TPHs) of the soil samples with GC-FID at different intervals of the incubation period (0, 5, 20, 60, 240 days). The bacterial population (CFU/g) was also monitored during the entire period of incubation. The results showed that 70% more TPH was degraded with a consortium with their sole application in 20 days of incubation. There was a positive correlation between TPH degradation and the 100-fold increase in bacterial population in contaminated soils. This study revealed that bacterial consortiums alone showed the maximum increase in the degradation of TPHs at 20 days. The application of nanoparticles and fertilizer has non-significant effects on the consortium degradation potential. Moreover, fertilizer alone or in combination with AgNPs and consortium slows the rate of degradation of TPHs over a short period. Still, it subsequently accelerates the rate of degradation of TPHs, and a negligible amount remains at the end of the incubation period.  相似文献   

5.
FR235222 is a natural tetra-cyclopeptide with a strong inhibition effect on histone deacetylases, effective on mammalian cells as well as on intracellular apicomplexan parasites, such as Toxoplasma gondii, in the tachyzoite and bradyzoite stages. This molecule is characterized by two parts: the zinc-binding group, responsible for the binding to the histone deacetylase, and the cyclic tetrapeptide moiety, which plays a crucial role in cell permeability. Recently, we have shown that the cyclic tetrapeptide coupled with a fluorescent diethyl-amino-coumarin was able to maintain properties of cellular penetration on human cells. Here, we show that this property can be extended to the crossing of the Toxoplasma gondii cystic cell wall and the cell membrane of the parasite in its bradyzoite form, while maintaining a high efficacy as a histone deacetylase inhibitor. The investigation by molecular modeling allows a better understanding of the penetration mechanism.  相似文献   

6.
Resistance to antifungal agents represents a major clinical challenge, leading to high morbidity and mortality rates, especially in immunocompromised patients. In this study, we screened soil bacterial isolates for the capability of producing metabolites with antifungal activities via the cross-streak and agar cup-plate methods. One isolate, coded S6, showed observable antifungal activity against Candida (C.) albicans ATCC 10231 and Aspergillus (A.) niger clinical isolate. This strain was identified using a combined approach of phenotypic and molecular techniques as Lysinibacillus sp. MK212927. The purified metabolite displayed fungicidal activity, reserved its activity in a relatively wide range of temperatures (up to 60 °C) and pH values (6–7.8) and was stable in the presence of various enzymes and detergents. As compared to fluconazole, miconazole and Lamisil, the minimum inhibitory concentration of the metabolite that showed 90% inhibition of the growth (MIC90) was equivalent to that of Lamisil, half of miconazole and one fourth of fluconazole. Using different spectroscopic techniques such as FTIR, UV spectroscopy, 1D NMR and 2D NMR techniques, the purified metabolite was identified as terbinafine, an allylamine antifungal agent. It is deemed necessary to note that this is the first report of terbinafine production by Lysinibacillus sp. MK212927, a fast-growing microbial source, with relatively high yield and that is subject to potential optimization for industrial production capabilities.  相似文献   

7.
Harringtonine (HT), a kind of anticancer drug isolated from Chinese herb Cephalotaxus hainanensis Li, has been used in the clinical treatment of human glanulocytic leukemia and chromic myelocytic leukemia. In this study, we investigated the effect of Bcl-2 on HT-induced apoptosis and Ca2+ mobilization in human leukemia HL-60 cells. 1 g/ml HT induced the apoptosis of HL-60/Neo cells in a time-dependent manner; while 1 g/ml HT failed to induce the apoptosis of HL-60/ Bcl-2 cells. HT-, A23187- (a Ca2+ ionophore), Carbonyl cyanide m-chlorophenylhydrazone (CCCP,a specific releaser of Ca2+ from mitochondria) and thapsigargin- (an inhibitor of endoplasmic reticulum Ca2+> -ATPase) induced changes in [Ca2+]i were monitored by using Fluo 3-AM with confocal laser scanning microscopy. The results demonstrated that HL-60 cells with enforced expression of Bcl-2 (HL-60/Bcl-2 cells) had increased Ca2+ permeability and increased intracellular Ca2+ store in comparison with HL-60 cells with negative control vectors (HL-60/Neo cells), suggesting that Bcl-2 might prevent HT-induced apoptosis by increased Ca2+ permeability and increased intracellular Ca2+ buffering capacity.  相似文献   

8.
Angiotensin II (AngII) is a crucial hormone that affects vasoconstriction and exerts hypertrophic effects on vascular smooth muscle cells. Here, we showed that phosphatidylinositol 3-kinase-dependent calcium mobilization plays pivotal roles in AngII-induced vascular constriction. Stimulation of rat aortic vascular smooth muscle cell (RASMC)-embedded collagen gel with AngII rapidly induced contraction. AngII-induced collagen gel contraction was blocked by pretreatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002) whereas ERK inhibitor (PD98059) was not effective. AngII-induced collagen gel contraction was significantly blocked by extracellular calcium depletion by EGTA or by nifedipine which is an L-type calcium channel blocker. In addition, AngII-induced calcium mobilization was also blocked by nifedipine and EGTA, whereas intracellular calcium store-depletion by thapsigargin was not effective. Finally, pretreatment of rat aortic ring with LY294002 and nifedipine significantly reduced AngII-induced constriction. Given these results, we suggest that PI3K-dependent activation of L-type calcium channels might be involved in AngII-induced vascular constriction.  相似文献   

9.
Dibutyl phthalate (DBP) produced by Streptomyces sp. H11809 exerted inhibitory activity against human GSK-3β (Hs GSK-3β) and Plasmodium falciparum 3D7 (Pf 3D7) malaria parasites. The current study aimed to determine DBP’s plausible mode of action against Hs GSK-3β and Pf 3D7. Molecular docking analysis indicated that DBP has a higher binding affinity to the substrate-binding site (pocket 2; −6.9 kcal/mol) than the ATP-binding site (pocket 1; −6.1 kcal/mol) of Hs GSK-3β. It was suggested that the esters of DBP play a pivotal role in the inhibition of Hs GSK-3β through the formation of hydrogen bonds with Arg96/Glu97 amino acid residues in pocket 2. Subsequently, an in vitro Hs GSK-3β enzymatic assay revealed that DBP inhibits the activity of Hs GSK-3β via mixed inhibition inhibitory mechanisms, with a moderate IC50 of 2.0 µM. Furthermore, the decrease in Km value with an increasing DBP concentration suggested that DBP favors binding on free Hs GSK-3β over its substrate-bound state. However, the antimalarial mode of action of DBP remains unknown since the generation of a Pf 3D7 DBP-resistant clone was not successful. Thus, the molecular target of DBP might be indispensable for Pf survival. We also identified nocardamine as another active compound from Streptomyces sp. H11809 chloroform extract. It showed potent antimalarial activity with an IC50 of 1.5 μM, which is ~10-fold more potent than DBP, but with no effect on Hs GSK-3β. The addition of ≥12.5 µM ferric ions into the Pf culture reduced nocardamine antimalarial activity by 90% under in vitro settings. Hence, the iron-chelating ability of nocardamine was shown to starve the parasites from their iron source, eventually inhibiting their growth.  相似文献   

10.
The migration of dendritic cells (DCs) to secondary lymphoid organs depends on chemoattraction through the interaction of the chemokine receptors with chemokines. However, the mechanism of how lymphoid chemokines attract DCs to lymphoid organs remains unclear. Here, we demonstrate the mechanism of DC migration in response to the lymphoid chemokine CCL21. CCL21-mediated DC migration is controlled by the regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) expression rather than through the activation of mitogen-activated protein kinases CCL21-exposed mature DCs (mDCs) exhibited decreased SERCA2 expression but not decreased phospholamban (PLB) or Hax-1 expression, which are known to be SERCA2-interacting proteins. In addition, CCL21 did not affect the mRNA levels of SERCA2 or its interacting protein Hax-1. Interestingly, SERCA2 expression was inversely related to DC migration in response to chemokine stimulation. The migratory capacity of CCL21-treated mDCs was decreased by the phospholipase C inhibitor U73122 and by the protein kinase C inhibitor BAPTA-AM. The migratory capacities of mDCs were increased in response to SERCA2 siRNA expression but were decreased by SERCA2 overexpression. In addition, DCs treated with a SERCA2-specific inhibitor (cyclopiazonic acid) had significantly increased migratory capacities as mDCs regardless of SERCA2 expression. Moreover, SERCA2 expression was dependent on DC maturation induced by cytokines or Toll-like receptor agonists. Therefore, the migratory capacities differed in differentially matured DCs. Taken together, these results suggest that SERCA2 contributes to the migration of CCL21-activated DCs as an important feature of the adaptive immune response and provide novel insights regarding the role of SERCA2 in DC functions.  相似文献   

11.
This study reports the therapeutic effectiveness of doxorubicin-conjugated zinc oxide nanoparticles against lung cancer cell line. The zinc oxide nanoparticles (ZnONPs) were first synthesised using a fungus, isolated from air with an extraordinary capability to survive in very high concentrations of zinc salt. Molecular analysis based on 18S rRNA gene sequencing led to its identification as Aspergillus niger with the NCBI accession no. OL636020. The fungus was found to produce ZnONPs via the reduction of zinc ions from zinc sulphate. The ZnONPs were characterised by various biophysical techniques. ZnONPs were further bioconjugated with the anti-cancer drug doxorubicin (DOX), which was further confirmed by different physical techniques. Furthermore, we examined the cytotoxic efficacy of Doxorubicin-bioconjugated-ZnONPs (DOX-ZnONPs) against lung cancer A549 cells in comparison to ZnONPs and DOX alone. The cytotoxicity caused due to ZnONPs, DOX and DOX-ZnONPs in lung cancer A549 cells was assessed by MTT assay. DOX-ZnONPs strongly inhibited the proliferation of A549 with IC50 value of 0.34 μg/mL, which is lower than IC50 of DOX alone (0.56 μg/mL). Moreover, DOX-ZnONPs treated cells also showed increased nuclear condensation, enhanced ROS generation in cytosol and reduced mitochondrial membrane potential. To investigate the induction of apoptosis, caspase-3 activity was measured in all the treated groups. Conclusively, results of our study have established that DOX-ZnONPs have strong therapeutic efficacy to inhibit the growth of lung cancer cells in comparison to DOX alone. Our study also offers substantial evidence for the biogenically synthesised zinc oxide nanoparticle as a promising candidate for a drug delivery system.  相似文献   

12.
From extraction experiments and γ-activity measurements, the exchange extraction constant corresponding to the equilibrium Ca2+(aq) + 1·Sr2+(nb) ? 1·Ca2+(nb) + Sr2+(aq) taking place in the two-phase water–nitrobenzene system (1 = beauvericin; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex(Ca2+, 1·Sr2+) = 1.1 ± 0.1. Further, the stability constant of the 1·Ca2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log β nb(1·Ca2+) = 10.1 ± 0.2. Finally, by using quantum mechanical density functional level of theory calculations, the most probable structures of the non-hydrated 1·Ca2+ and hydrated 1·Ca2+·H2O complex species were predicted.  相似文献   

13.
Correction for ‘A caged imidazopyrazinone for selective bioluminescence detection of labile extracellular copper(ii)’ by Justin J. O’Sullivan et al., Chem. Sci., 2022, https://doi.org/10.1039/D1SC07177G.

The authors regret that a key organisation was omitted from the Acknowledgements section of their article. The correct Acknowledgement should read as follows:This work was supported by the National Institute of Health (NIH MIRA 5R35GM133684-02 and NIH DK104770), the National Science Foundation (NSF CAREER 2048265). We also thank the Hartwell Foundation for their generous support for M. C. H. as a Hartwell Individual Biomedical Investigator, as well as the UC Davis CAMPOS Program and the University of California’s Presidential Postdoctoral Fellowship Program for their support of M. C. H. as a CAMPOS Faculty Fellow and former UC President’s Postdoctoral Fellow, respectively. This work was also supported in part by gift funds from the UC Davis Comprehensive Cancer Center. We thank Dr’s Gary and Kathy Luker (University of Michigan) for gifting MDA-MB-231 cell lines stably expressing secreted nanoluciferase. We also thank Joseph AbouAyash and Adam Hillaire for their support in the synthesis of precursors and the entire Heffern lab group for their support.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

14.
Endophytic fungi including black aspergilli have the potential to synthesize multiple bioactive secondary metabolites. Therefore, the search for active metabolites from endophytic fungi against pathogenic microbes has become a necessity for alternative and promising strategies. In this study, 25 endophytic fungal isolates associated with Malus domestica were isolated, grown, and fermented on a solid rice medium. Subsequently, their ethyl acetate crude extracts were pretested for biological activity. One endophytic fungal isolate demonstrated the highest activity and was chosen for further investigation. Based on its phenotypic, ITS ribosomal gene sequences, and phylogenetic characterization, this isolate was identified as Aspergillus tubingensis strain AN103 with the accession number (KR184138). Chemical investigations of its fermented cultures yielded four compounds: Pyranonigrin A (1), Fonsecin (2), TMC 256 A1 (3), and Asperazine (4). Furthermore, 1H-NMR, HPLC, and LC-MS were performed for the identification and structure elucidation of these metabolites. The isolated pure compounds showed moderate-to-potent antibacterial activities against Pseudomonas aeruginosa and Escherichia coli (MIC value ranged from 31 and 121 to 14.5 and 58.3 μg/mL), respectively; in addition, the time–kill kinetics for the highly sensitive bacteria against isolated compounds was also investigated. The antifungal activity results show that (3) and (4) had the maximum effect against Fusarium solani and A. niger with inhibition zones of 16.40 ± 0.55 and 16.20 ± 0.20 mm, respectively, and (2) had the best effect against Candida albicans, with an inhibition zone of 17.8 ± 1.35 mm. Moreover, in a cytotoxicity assay against mouse lymphoma cell line L5178Y, (4) exhibited moderate cytotoxicity (49% inhibition), whereas (1–3) reported weak cytotoxicity (15, 26, and 19% inhibition), respectively. Our results reveal that these compounds might be useful to develop potential cytotoxic and antimicrobial drugs and an alternative source for various medical and pharmaceutical fields.  相似文献   

15.
16.
Chitosanase hydrolyzes β-(1,4)-linked glycosidic bonds are used in chitosan chains to release oligosaccharide mixtures. Here, we cloned and expressed a cold-adapted chitosanase (CDA, Genbank: MW094131) using multi-copy expression plasmids (CDA1/2/3/4) in Pichia pastoris. We identified elevated CDA expression levels in multi-copy strains, with strain PCDA4 selected for high-density fermentation and enzyme-activity studies. The high-density fermentation approach generated a CDA yield of 20014.8 U/mL, with temperature and pH optimization experiments revealing the highest CDA activity at 20 °C and 5.0, respectively. CDA was stable at 10 °C and 20 °C. Thus, CDA could be used at low temperatures. CDA was then displayed on P. pastoris using multi-copy expression plasmids. Then, multi-copy strains were constructed and labelled as PCDA(1-3)-AGα1. Further studies showed that the expression of CDA(1-3)-AGα1 in multi-copy strains was increased, and that strain PCDA3-AGα1 was chosen for high-density fermentation and enzyme activity studies. By using a multi-copy expression and high-density fermentation approach, we observed CDA-AGα1 expression yields of 102415 U/g dry cell weight. These data showed that the displayed CDA exhibited improved thermostability and was more stable over wider temperature and pH ranges than free CDA. In addition, displayed CDA could be reused. Thus, the data showed that displaying enzymes on P. pastoris may have applications in industrial settings.  相似文献   

17.
Calcium ion is a ubiquitous intracellular messenger, performing this function in many eukaryotic cells. To understand calcium regulation mechanisms and how disturbances of these mechanisms are associated with disease states, it is necessary to measure calcium inside cells. Ca2+-regulated photoproteins have been successfully used for this purpose for many years. Here we report the results of comparative studies on the properties of recombinant aequorin from Aequorea victoria, recombinant obelins from Obelia geniculata and Obelia longissima, recombinant mitrocomin from Mitrocoma cellularia, and recombinant clytin from Clytia gregaria as intracellular calcium indicators in a set of identical in vitro and in vivo experiments. Although photoproteins reveal a high degree of identity of amino acid sequences and spatial structures, and, apparently, have a common mechanism for the bioluminescence reaction, they were found to differ in the Ca2+ concentration detection limit, the sensitivity of bioluminescence to Mg2+, and the rates of the rise of the luminescence signal with a sudden change of Ca2+ concentration. In addition, the bioluminescence activities of Chinese hamster ovary cells expressing wild-type photoproteins also differed. The light signals of cells expressing mitrocomin, for example, slightly exceeded the background, suggesting that mitrocomin may be hardly used to detect intracellular Ca2+ without modifications improving its properties. On the basis of experiments on the activation of endogenous P2Y2 receptor in Chinese hamster ovary cells by ATP, we suggest that wild-type aequorin and obelin from O. longissima are more suitable for calcium detection in cytoplasm, whereas clytin and obelin from O. geniculata can be used for calcium measurement in cell compartments with high Ca2+ concentration. Figure
Hydromedusan photoproteins differ in Ca2+ concentration detection limit, sensitivity of bioluminescence to Mg2+, and rates of rise of luminescence signal with a sudden change of [Ca2+] despite a high degree of identity of their amino acid sequences and spatial structures, and, apparently, a common mechanism for the bioluminescence reaction.  相似文献   

18.
In the search for new chemical scaffolds able to afford NLRP3 inflammasome inhibitors, we used a pharmacophore-hybridization strategy by combining the structure of the acrylic acid derivative INF39 with the 1-(piperidin-4-yl)1,3-dihydro-2H-benzo[d]imidazole-2-one substructure present in HS203873, a recently identified NLRP3 binder. A series of differently modulated benzo[d]imidazole-2-one derivatives were designed and synthesised. The obtained compounds were screened in vitro to test their ability to inhibit NLRP3-dependent pyroptosis and IL-1β release in PMA-differentiated THP-1 cells stimulated with LPS/ATP. The selected compounds were evaluated for their ability to reduce the ATPase activity of human recombinant NLRP3 using a newly developed assay. From this screening, compounds 9, 13 and 18, able to concentration-dependently inhibit IL-1β release in LPS/ATP-stimulated human macrophages, emerged as the most promising NLRP3 inhibitors of the series. Computational simulations were applied for building the first complete model of the NLRP3 inactive state and for identifying possible binding sites available to the tested compounds. The analyses led us to suggest a mechanism of protein–ligand binding that might explain the activity of the compounds.  相似文献   

19.
20.
The compound Ca14MnP11 crystallizes in the Ca14AlSb11 structure type with the tetragonal space group I41/acd (Z=8) and lattice parameters of , c=20.7565(9) at 90 K. The structure consists of MnP49− tetrahedron, P37− trimer, 4 P3− isolated anions and 14 Ca2+ cations. Similar to other compounds of this structure type containing phosphorous, the P37− trimer has a central P atom that is best modeled in the structure as being equally split between two sites. In addition, there is no additional distortion of the manganese-containing tetrahedron compared with the main group analog, Ca14GaP11, suggesting that the Mn oxidation state is Mn2+. Temperature-dependent magnetic susceptibility shows that the compound is paramagnetic over the entire temperature range measured (2-300 K). The data can be fit with a modified Curie-Weiss law and provide an effective magnetic moment of 5.80 (2) B.M. with a Weiss constant of −2.13(2) K and . This moment is significantly higher than those measured for any of the Mn-containing analogs and is consistent with Mn2+. This result will be discussed in light of the electron counting scheme for Mn compounds of the Ca14AlSb11 structure-type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号