首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mild and highly efficient thiol-ene click reaction has been used to construct a rotaxane incorporating dibenzo-24-crown-8 (DB24C8) and a dibenzylammonium-derived thread in high yield under the irradiation of UV light. A rotaxane containing a disulfide linkage in the macrocycle was also synthesized by the thiol-ene click reaction. It has been demonstrated that the formation of the [2]rotaxane with the disulfide bond in the macrocycle occurs by a mechanism that is different to the threading-followed-by-stoppering process. The successful construction of a rotaxane directly from its constituent components, the macrocycle containing a disulfide linkage and the dibenzylammonium hexafluorophosphate salt, suggests that the space within the macrocycle incorporating the disulfide linkage is smaller than the phenyl unit and a plausible reaction mechanism has been proposed as follows: A small amount of the initiator forms two radicals upon the absorption of UV irradiation; the radicals act as a "key" to "unlock" the disulfide bond in the macrocycle. The resulting crown ether like moiety in the macrocycle is clipped around the ammonium ion center in the dumb-bell-shaped compound. The [2]rotaxane is generated upon recombination of the disulfide linkage.  相似文献   

2.
A thermoresponsive rotaxane shuttling system was developed with a trichloroacetate counteranion of an ammonium/crown ether-type rotaxane. Chemoselective thermal decomposition of the ammonium trichloroacetate moiety on the rotaxane yielded the corresponding nonionic rotaxane accompanied by a positional change of the crown ether on the axle. The rotaxane skeleton facilitated effective dissociation of the acid, markedly lowering the thermal decomposition temperature.  相似文献   

3.
This paper reports a novel methodology for the conformational analysis of [2]rotaxanes. It combines NMR spectroscopic (COSY, NOESY and the recently reported paramagnetic line-broadening and suppression technique) and electrochemical techniques to enable a quantitative analysis of the co-conformations of interlocked molecules and the conformations of their components. This methodology was used to study a model [2]rotaxane in solution. This [2]rotaxane consists of an axle that incorporates an electron-poor, doubly positively charged viologen that threads an electron-rich crown ether. It has been shown that the axle of the [2]rotaxane in its dicationic state adopts a folded conformation in solution and the crown ether is localised at the viologen moiety. Following a one-electron reduction of viologen, the paramagnetic radical cation of the [2]rotaxane retains its folded conformation in solution. The data also demonstrate that in the radical cation the crown ether remains localised at the viologen, despite its reduced affinity for the singly reduced viologen. The combined quantitative NMR spectroscopic and electrochemical characterisation of the electromechanical function of the model [2]rotaxane in solution provides an important reference point for the study of switching in structurally related bistable [2]rotaxanes, which is the subject of the second part of this work.  相似文献   

4.
The novel photochromic [2]rotaxane based on chromene molecule introduced into a crown-containing macrocyclic receptor was synthesized. The photochemical properties of rotaxane could be modified by the complexation of the crown ether moiety.  相似文献   

5.
A rotaxane with a ferrocene moiety at the axle terminus was prepared. The redox potential of the ferrocene moiety decreased by ca. 80 mV when the rotaxane had a crown ether wheel capable of moving on the axle. Thus, the stabilization of the oxidized state of the ferrocene moiety is assumed to accompany the transposition of the wheel component on the axle toward the ferrocene moiety. [reaction--see text]  相似文献   

6.
Directed helicity control of a polyacetylene dynamic helix was achieved by hybridization with a rotaxane skeleton placed on the side chain. Rotaxane-tethering phenylacetylene monomers were synthesized in good yields by the ester end-capping of pseudorotaxanes that consisted of optically active crown ethers and sec-ammonium salts with an ethynyl benzoic acid. The monomers were polymerized with [{RhCl(nbd)}(2)] (nbd=norbornadiene) to give the corresponding polyacetylenes in high yields. Polymers with optically active wheel components that are far from the main chain show no Cotton effect, thereby indicating the formation of racemic helices. Our proposal that N-acylative neutralization of the sec-ammonium moieties of the side-chain rotaxane moieties enables asymmetric induction of a one-handed helix as the wheel components approach the main chain is strongly supported by observation of the Cotton effect around the main-chain absorption region. A polyacetylene with a side-chain rotaxane that has a shorter axle component shows a Cotton effect despite the ammonium structure of the side-chain rotaxane moiety, thereby suggesting the importance of proximity between the wheel and the main chain for the formation of a one-handed helix. Through-space chirality induction in the present systems proved to be as powerful as through-bond chirality induction for formation of a one-handed helix, as demonstrated in an experiment using non-rotaxane-based polyacetylene that had an optically active binaphthyl group. The present protocol for controlling the helical structure of polyacetylene therefore provides the basis for the rational design of one-handed helical polyacetylenes.  相似文献   

7.
A rotaxane, containing both oligo ethylene glycol and secondary ammonium cation binding sites for a threaded crown ether, has been prepared. 1H NMR spectroscopy has been used to show that the crown ether moiety in the rotaxane undergoes acid-base and alkali metal cation dependent switch from binding at the ammonium cation position to cooperative binding to the metal cation at the oligo ethylene glycol site.  相似文献   

8.
Tripodal [2]rotaxane, 3, and the structurally related axle, 2, incorporating a viologen moiety, a crown ether, and three thiol anchoring groups have been synthesized. Analogous monopodal derivatives, 1, have also been prepared. Self-assembled monolayers of the above tripodal and monopodal systems on gold have been studied by cyclic voltammetry. It has been shown that a thiol anchoring group is required to attach the monopodal viologen 1 to the surface of gold and that the maximum surface coverage of 1 corresponds to 2.7 x 10(-10) mol.cm(-2). The adsorbed monopodal viologen 1 does not thread bis-p-phenylene-34-crown-10 ether, 6. However, the tripodal axle 2 adsorbed on the surface of gold threads the crown ether 6 to form a hetero [2]rotaxane. In the case of the tripodal axle 2, the surface coverage is 7 x 10(-11) mol.cm(-2), while for the tripodal [2]rotaxane 3 the surface coverage reaches 1.1 x 10(-10) mol.cm(-2).  相似文献   

9.
This communication describes a new protocol for the construction of [2]rotaxanes: "threading-followed-by-shrinking". This approach involves the threading of a rodlike unit through a crown ether-like macrocycle and then shrinking the size of the macrocycle's cavity through coordination of a transition-metal ion by a salophen moiety in the macrocycle. The self-assembly of the macrocycle and a thread, followed by addition of palladium acetate, afforded the [2]rotaxane, which contains a palladium(II)-salophen moiety, after counterion exchange. This [2]rotaxane was characterized fully by NMR and IR spectroscopic, mass spectrometric, and elemental and X-ray crystallographic analyses.  相似文献   

10.
[reaction: see text] We have synthesized a [2]rotaxane from a crown-ether-like macrocycle that undergoes ring opening and closing through cleavage and formation of imino bonds of a salen moiety; the self-assembly of this macrocycle and a dumbbell-shaped rodlike component, followed by addition of nickel acetate, afforded, after counterion exchange, a [2]rotaxane that is stabilized through coordination of the Ni ion to the macrocycle's salen moiety.  相似文献   

11.
The structural complexity of mechanically interlocked molecules are very attractive to chemists owing to the challenges they present. In this article, novel mechanically interlocked molecules with a daisy‐chain‐containing hetero[4]rotaxane motif were efficiently synthesized. In addition, a novel integrative self‐sorting strategy is demonstrated, involving an ABB‐type (A for host, dibenzo‐24‐crown‐8 (DB24C8), and B for guest, ammonium salt sites) monomer and a macrocycle host, benzo‐21‐crown‐7 (B21C7), in which the assembled species in hydrogen‐bonding‐supported solvent only includes a novel daisy‐chain‐containing hetero[4]pseudorotaxane. The found self‐sorting process involves the integrative recognition between B21C7 macrocycles and carefully designed components simultaneously containing two types of secondary ammonium ions and a host molecule, DB24C8 crown ether. The self‐sorting strategy is integrative to undertake self‐recognition behavior to form one single species of pseudorotaxane compared with the previous report. This self‐sorting system can be used for the efficient one‐pot synthesis of a daisy‐chain‐containing hetero[4]rotaxane in a good yield. The structure of hetero[4]rotaxane was confirmed by 1H NMR spectroscopy and high‐resolution electrospray ionization (HR‐ESI) mass spectrometry.  相似文献   

12.
A crown ether/amine‐type [2]rotaxane was synthesized and utilized as a probe for the detection of acids and anions. The addition of acids to the amine‐type [2]rotaxane solution generated corresponding crown ether/ammonium‐type [2]rotaxanes, which were purified by silica gel column chromatography as ammonium salts. The isolated yields of the [2]rotaxanes, possessing a variety of anions, depended on the acidity and polarity of the counter anions. The behaviours of the ammonium‐type [2]rotaxanes on thin‐layer chromatography (TLC) silica gel reflected the properties of the counter anions. The treatment of the amine‐type [2]rotaxane with acids afforded the corresponding ammonium‐type [2]rotaxanes bearing several different anions. The ammonium‐type [2]rotaxanes behaved similarly to the purified [2]rotaxanes on the TLC silica gel. Furthermore, we succeeded in the analysis of anions using mixtures of the amine‐type [2]rotaxane and salts in an appropriate solvent. We demonstrated the detection of anions by the combination of TLC and the utilization of the [2]rotaxane probe.  相似文献   

13.
The central component of the programmable molecular switch recently demonstrated by Stoddart and Heath is [2]rotaxane, which consists of a cyclobis(paraquat-p-phenylene) shuttle (CBPQT(4+))(PF(6)(-))(4) (the ring) encircling a finger and moving between two stations, tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP). As a step toward understanding the mechanism of this switch, we report here its electronic structure using two flavors of density functional theory (DFT): B3LYP/6-31G and PBE/6-31G. We find that the electronic structure of composite [2]rotaxane can be constructed reasonably well from its parts by combining the states of separate stations (TTF and DNP) with or without the (CBPQT)(PF(6))(4) shuttle around them. That is, the "CBPQT@TTF" state, (TTF)(CBPQT)(PF(6))(4)-(DNP), is described well as a combination of the (TTF)(CBPQT)(PF(6))(4) complex and free DNP, and the "CBPQT@DNP" state, (TTF)-(DNP)(CBPQT)(PF(6))(4), is described well as a combination of free TTF and the (DNP)(CBPQT)(PF(6))(4) complex. This allows an aufbau or a "bottom-up" approach to predict the complicated [n]rotaxanes in terms of their components. This should be useful in designing new components to lead to improved properties of the switches. A critical function of the (CBPQT(4+))(PF(6)(-))(4) shuttle in switching is that it induces a downshift of the frontier orbital energy levels of the station it is on (TTF or DNP). This occurs because of the net positive electrostatic potential exerted by the CBPQT(4+) ring, which is located closer to the active station than the four PF(6)(-)'s. This downshift alters the relative position of energy levels between TTF and DNP, which in turn alters the electron tunneling rate between them, even when the shuttle is not involved directly in the actual tunneling process. Based on this switching mechanism, the "CBPQT@TTF" state is expected to be a better conductor since it has better aligned levels between the two stations. A second potential role of the (CBPQT(4+))(PF(6)(-))(4) shuttle in switching is to provide low-lying LUMO levels. If the shuttle is involved in the actual tunneling process, the reduced HOMO-LUMO gap (from 3.6 eV for the isolated finger to 1.1 eV for "CBPQT@TTF" or to 0.6 eV for "CBPQT@DNP" using B3LYP) would significantly facilitate the electron tunneling through the system. This might occur in a folded conformation where a direct contact between free station and the shuttle on the other station is possible. When this becomes the main switching mechanism, we expect the "CBPQT@DNP" state to become a better conductor because its HOMO-LUMO gap is smaller and because its HOMO and LUMO are localized at different stations (HOMO exclusively at TTF and LUMO at CBPQT encircling DNP) so that the HOMO-to-LUMO tunneling would be through the entire molecule of [2]rotaxane. Thus an essential element in designing these switches is to determine the configuration of the molecules (e.g., through self-assembled monolayers or incorporation of conformation stabilizing units).  相似文献   

14.
This paper describes the self-assembly of a heterosupramolecular system consisting of a tripodal [2]rotaxane adsorbed at the surface of a titanium dioxide nanoparticle. The tripodal [2]rotaxane consists of a dumbbell-shaped molecule, incorporating two electron-poor viologens, threading an electron-rich crown ether. The [2]rotaxane also incorporates a bulky tripodal linker group at one end and a bulky stopper group at the other end. The [2]rotaxane is adsorbed, via the tripodal linker group, at the surface of a titanium dioxide nanoparticle. The structure and function of the resulting hetero[2]rotaxane have been studied in detail by (1)H NMR spectroscopy and cyclic voltammetry. A key finding is that it is possible to electronically address and switch the above hetero[2]rotaxane.  相似文献   

15.
Three new [2]rotaxanes with aromatic nitrogen donors appended to the crown ether wheel have been synthesized and used as ligands to coordinate Cd(II) ions. One of these yields a new type of 2-periodic, metal organic rotaxane framework in which the wheel rather than the axle is used to link the metal nodes.  相似文献   

16.
A rotaxane consisting of a crown ether wheel and a secondary ammonium salt axle, on which a neopentyl-type end-cap was placed close to the ammonium moiety, was prepared. When the rotaxane was treated by excess triethylamine, the wheel component thermodynamically moved over the proximate neopentyl group to deconstruct the interlocked structure. The wheel component in the rotaxane, however, quantitatively moved against the proximate end-cap by the action of trifluoroacetic anhydride in the presence of excess triethylamine. This motion, which was driven by the simple one-shot acylation reaction, can be referred as the active transport. When the distant end-cap is of the neopentyl-type, the axle can be thermally dethreaded from the distant end-cap after the acylative transport. The series of the wheel movement controlled by the neopentyl group can be the basic motion of the unidirectional linear molecular motor.  相似文献   

17.
A pseudorotaxane consisting of a 24-membered crown ether and secondary ammonium salt with the hydroxy group at the terminus was quantitatively acylated by bulky acid anhydride in the presence of tributylphosphane as catalyst to afford the corresponding rotaxane in high yield. Large-scale synthesis without chromatographic separation was easily achieved. The ammonium group in the resulting rotaxane was quantitatively acylated with excess electrophile in the presence of excess trialkylamine. Various N-functionalized rotaxanes were prepared by this sequential double-acylation protocol. 1H NMR spectra and X-ray crystallographic analyses of the rotaxanes showed that the crown ether component was captured on the ammonium group in ammonium-type rotaxane by strong hydrogen-bonding intercomponent interaction. The conformation around the ammonium group was fixed by the hydrogen-bonding interaction. Meanwhile, the conformation of the amide-type rotaxane was determined by the weak CH/pi interaction between the methylene group in crown ether and the benzene ring of the axle component. The N-acylation of ammonium-type rotaxane is useful for the preparation of both functionalized rotaxanes and weak intercomponent interaction-based rotaxanes.  相似文献   

18.
A modified dumbbell obtained by replacing one of the phenyl groups of the dibenzylammonium with a strong electron-withdrawing trifluoromethyl group templated the synthesis of the smallest [2]rotaxane reported so far. The trifluoromethyl group not only enhances the templating effect of the dumbbell but also acts as the stopper to prevent dethreading of a [20]crown ether macrocycle.  相似文献   

19.
A class of coordination polymers in which the linking ligands are mechanically interlocked rotaxane molecules is reviewed. To date, four different, axle - wheel templating motifs have been used to create the [2]pseudorotaxane linkers for these unique solid-state materials; (1) protonated diaminoalkane axles with cucurbit[6]uril wheels, (2) 1,2-bis(4,4'-bipyridinio)ethane axles with dibenzo[24]crown-8 wheels, (3) 2,6-naphthalene dicarboxylate axles with tetra-imidazolium macrocycle wheels and (4) a Cu(i) complex of a 1,10-phenanthroline containing dicarboxylate axle with a 1,10-phenanthroline containing crown ether wheel. The synthesis and solid state structure of each coordination polymer is described. The future directions of this area of research and some designs for the next generation of these compounds are discussed.  相似文献   

20.
First rotaxane having tert-ammonium axle was prepared from tert-ammonium salt axle and dibenzo-24-crown-8-ether (DB24C8) wheel, suggesting that tert-ammonium salt axle forms the corresponding threaded complex with a crown ether. Same rotaxane was obtained quantitatively by N-methylation of sec-ammonium-type rotaxane. The tert-ammonium-type rotaxane was neutralized with amine base to tert-amine-type rotaxane in 100% yield, indicating the first isolation of ‘nonionic’ amine-type rotaxane. The reversible protonation and deprotonation of tert-amine-type rotaxane were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号